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Abstract 

Study Objectives:  We attempted to predict vigilance performance in adolescents during partial sleep deprivation using task sum-
mary metrics and drift diffusion modelling measures (DDM) derived from baseline vigilance performance.

Methods:  In the Need for Sleep studies, 57 adolescents (age = 15–19 years) underwent two baseline nights of 9-h time-in-bed (TIB), 
followed by two cycles of weekday sleep-restricted nights (5-h or 6.5-h TIB) and weekend recovery nights (9-h TIB). Vigilance was 
assessed daily with the Psychomotor Vigilance Task (PVT), with the number of lapses (response times ≥ 500 ms) as the primary out-
come measure. The two DDM predictors were drift rate, which quantifies the speed of information accumulation and determines how 
quickly an individual derives a decision response, and non-decision time range, which indicates within-subject variation in physical, 
non-cognitive responding, e.g. motor actions.

Results:  In the first week of sleep curtailment, faster accumulation of lapses was significantly associated with more lapses at baseline 
(p = .02), but not the two baseline DDM metrics: drift and non-decision time range (p > .07). On the other hand, faster accumulation of 
lapses and greater increment in reaction time variability from the first to the second week of sleep restriction were associated with 
lower drift (p < .007) at baseline.

Conclusions:  Among adolescents, baseline PVT lapses can predict inter-individual differences in vigilance vulnerability during 1 
week of sleep restriction on weekdays, while drift more consistently predicts vulnerability during more weeks of sleep curtailment.

Clinical Trial Information:  Effects of Napping in Sleep-Restricted Adolescents, clinicaltrials.gov, NCT02838095. The Cognitive and 
Metabolic Effects of Sleep Restriction in Adolescents (NFS4), clinicaltrials.gov, NCT03333512.

Key words: baseline performance; diffusion drift model; sleep restriction; sustained attention, vigilance; vulnerability

Statement of Significance

In adults, the extent to which sleep deprivation impairs vigilance can be predicted using performance on vigilance tests in a 

well-rested state. Both summary metrics (e.g. lapses in attention), and metrics derived from computational models are useful in 

this regard. Here, we extend these findings by showing that the same is true of adolescents over multiple nights of sleep restriction, 

although the pattern of prediction in this analysis was more nuanced. This is the first study to demonstrate that baseline vigilance 

is a robust predictor in this earlier maturational stage. Knowing one’s vulnerability to sleep restriction may motivate behavioral 

change, and future studies could build on this model with the inclusion of other relevant chronobiological and physiological factors.

Introduction

Recurrent partial sleep loss has clear adverse effects on many 

facets of cognition, with vigilance being particularly affected [1]. 

While this has been a relatively uncontroversial finding in adults 

[2], the consensus is only more recently emerging that the same is 

true for adolescents – contrasting with earlier studies suggesting 

that adolescents could be resilient to sleep loss [3]. For example, 

Short et al. [4] and Campbell et al. [5] both found dose-depend-

ent responses of sleep duration on adolescents’ vigilance, which 

was measured with the Psychomotor Vigilance Test (PVT) [6], 

in titrated, laboratory paradigms. In the Need For Sleep (NFS)1 
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studies [7–11], which we reanalyzed in this communication, ado-

lescents’ PVT performance, working memory, and processing 

speed were also consistently impaired in several different short 

sleep schedules relative to a 9-h time-in-bed (TIB) control group.

Beyond the population-level consequences of short sleep, a 

subset of individuals may be particularly vulnerable to sleep loss; 

this might be inferred from the large inter-individual variability in 

vigilance declines across single exposures to sleep curtailment [5, 

7–14]. Although this has not been explicitly tested in adolescents, 

this vulnerability is stable across multiple exposures to sleep dep-

rivation in adults [15, 16], suggesting that it may be useful to find 

its markers and predictors in younger people.

While in adults, baseline measures of sleep latency on the 

Maintenance of Wakefulness Test [17], as well as connectivity 

metrics derived from functional magnetic resonance imaging [18] 

may predict individual differences in vigilance declines during 

sleep loss, the most consistent predictor with acute total sleep 

deprivation or multi-night partial sleep loss is performance on 

identical tasks while well rested. Predictive power for impairment 

associated with total sleep deprivation has been demonstrated 

for both summary metrics (e.g. PVT lapses) [19] and measures 

derived from drift-diffusion modeling (DDM) [20].

The DDM, which was first introduced by Ratcliff [21], pos-

its that every decision-making process consists of a non-deci-

sion-making phase and a decision-making phase. The former 

involves an element of physical, non-cognitive responding, such 

as motor actions, and can be indicated by non-decision time 

which includes the time it takes to initiate a physical response. 

The decision-making phase is the cognitive process of deriving 

a final decision, which can be objectively quantified as the drift 

rate—the speed of information accumulation that determines 

how quickly an individual derives a decision response. For each 

individual, an average non-decision time and drift measure and 

their corresponding variability measure (e.g. range and standard 

deviation) can be derived based on their performance across PVT 

trials. DDM metrics have been used as a predictor of behavioral 

performance in multiple studies involving the effects of sleep 

deprivation on standard PVT performance [20, 22], and these have 

consistently shown that lower drift rates at baseline are associ-

ated with poorer task performance during sleep deprivation. In 

addition, variability/range in non-decision time across all trials 

is greater after sleep deprivation than at baseline [20, 23] and 

among vulnerable as compared to resilient participants [22].

Currently, only one study has used baseline PVT metrics to 

predict inter-individual differences in vigilance vulnerability dur-

ing sleep restriction across multiple nights on adults [17]; this 

report showed that the baseline number of lapses could predict 

its increase over 5 nights of 4-h time-in-bed (TIB), without explor-

ing the predictive power of DDM measures.

Whether summary metrics (e.g. number of lapses) and DDM 

parameters from the PVT in well-rested adolescents similarly 

predict their vulnerability to multi-night sleep restriction remains 

to be investigated. Importantly, whether parameters predicting 

vulnerability to sleep restriction on weekdays over 1 week are 

the same as those predicting vigilance vulnerability when sleep 

restriction is recurrent and occurs again after the typical recov-

ery sleep over the weekend is not yet known. To address these in 

the present report, we used PVT data collected from adolescents 

who went through two cycles of sleep restriction of 3–5 nights, 

separated by two nights of recovery sleep. We separately exam-

ined performance declines in the first week of sleep curtailment, 

and further declines from the first to the second week, which 

represents vigilance vulnerability to recurrent periods of sleep 

restriction. Based on the findings of Patanaik et al. [22]. and Chua 

et al. [24], we predicted that both of these measures of vulnera-

bility would be associated with more lapses and a lower drift rate 

at baseline.

Methods

Participants
Data from 57 adolescent participants (31 males) between 15 and 

19 years of age in the NFS Studies [8, 9] were used in the present 

analysis (Table 1). During the screening, participants’ sleep was 

assessed with the Pittsburgh Sleep Quality Index (PSQI) [25], and 

actigraphy accompanied by a sleep diary. Their chronotype was 

measured with the Morningness–Eveningness Questionnaire [26], 

excessive daytime sleepiness with the Epworth Sleepiness Scale 

[27], and symptoms of chronic sleep reduction with the Chronic 

Sleep Reduction Questionnaire [28] (for details of screening, refer 

to [7]).

Eligibility criteria included no known health conditions or 

sleep disorders, a body mass index of ≤30 kg/m2, a daily intake 

of ≤5 cups of caffeinated beverages, not habitual short sleepers 

(actigraphically estimated average TIB of <6 h with weekend sleep 

extension of ≤1 h), and no travel history across >2 time zones in 

the month prior to the experiment.

Study protocol
The NFS study series was aimed at characterizing adolescents’ 

neurobehavioral functions under different sleep schedules. In the 

current analysis, comparisons involved 2 groups of participants 

who underwent two periods of sleep restriction to 5 or 6.5 h that 

was below the minimum age-appropriate recommended duration 

of 8 h [29]. Specifically, the 15-day study (Figure 1), which was con-

ducted in a boarding school during the year-end holiday period, 

started with two adaptation/ baseline nights of 9-h TIB (B
1
 and 

B
2
: 23:00–08:00), followed by two successive cycles of manipula-

tion nights and recovery nights. The first cycle consisted of five 

nights of sleep opportunity manipulation (M1
1
-M1

5
: 01:00–06:00 

for the 5-h group; 00:15–06:45 for the 6.5-h group) and ended with 

2 nights of 9-h recovery sleep opportunity (R1
1
–R1

2
: 23:00–08:00), 

simulating a typical school week. The second cycle included three 

manipulation nights (M2
1
–M2

3
) and ended with two nights of 

recovery (R2
1
–R2

2
). Details on the boarding arrangement as well 

as the polysomnographic changes (Supplementary Table S1) from 

baseline to the sleep restriction and recovery nights are summa-

rized in the Supplementary Materials. During the week prior to 

their stay at the boarding school, participants were required to 

follow a 9-h sleep schedule (23:00–08:00), and compliance was 

verified with actigraphy (Supplementary Table S1) [8, 9].

Sustained attention was assessed with a 10-min PVT [6] 2 

times on the first day of the study (B
0
), and thereafter, 3 times 

daily (Figure 1). The PVT was the last task of a cognitive test bat-

tery that was administered in a classroom at 10:00, 15:45–16:00, 

and 20:00.

All the NFS study protocols were approved by the Institutional 

Review Board of the National University of Singapore and con-

ducted according to the principles in the Declaration of Helsinki. 

Participants and their legal guardians provided written informed 

consent prior to their participation in the studies.

1 The NFS studies aimed at characterizing neurobehavioral changes 
during different sleep schedules among adolescents. These quasi-
experiments were conducted at a boarding school, and participants’ sleep 
and testing schedules were carefully monitored by the research staff.
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Table 1. Characteristics of the participants measured during the screening phase

 Overall 5 h group 6.5 h group

P Mean SD Mean SD Mean SD 

N 57 — 28 — 29 — —

Age (years) 16.74 1.13 16.91 1.14 16.58 1.12 .28

Gender (% male) 54.38 — 57.14 — 51.72 — .68

Body Mass Index 21.09 3.12 20.92 2.77 21.25 3.46 .69

Daily caffeine intake (cups) 0.66 0.85 0.75 0.91 0.58 0.80 .46

Morningness-Eveningness Questionnaire 49.60 7.56 50.25 7.66 48.97 7.54 .53

Epworth Sleepiness Scale 7.40 3.24 6.57 2.86 8.21 3.43 .06

Chronic Sleep Reduction Questionnaire 34.73 5.52 34.21 5.07 35.24 5.96 .49

Pittsburgh Sleep Quality Index

Weekday TIB (h) 6.69 1.09 6.52 0.72 6.85 1.35 .26

Weekend TIB (h) 8.85 1.13 8.76 1.09 8.93 1.18 .57

Weekday TST (h) 6.30 1.00 6.13 0.73 6.46 1.19 .21

Weekend TST (h) 8.48 1.11 8.40 1.02 8.56 1.20 .59

Global score 4.93 1.94 5.39 2.25 4.48 1.50 .08

Actigraphy

Weekday TIB (h) 6.72 0.92 6.44 0.99 7.00 0.77 .02

Weekend TIB (h) 8.30 0.95 8.15 0.70 8.45 1.13 .24

Weekday TST (h) 5.60 0.82 5.69 0.89 5.51 0.75 .41

Weekend TST (h) 6.99 0.95 7.23 0.63 6.76 1.14 .06

Average TST (h) 6.00 0.67 6.14 0.64 5.86 0.68 .12

Sleep Efficiency (%) 83.68 6.82 88.51 4.10 79.02 5.57 <.001

Because of missing data, for actigraphy, n = 26–28 for the 5 h group.

Figure 1. Experimental protocol. The study lasted for 15 days. All the participants started with two adaptation and baseline nights (B
1
 and B

2
) of 

9-h TIB per night (black bars). This was followed by the first cycle of sleep manipulation for 5 nights (M1
1
 to M1

5
) and recovery sleep for 2 nights (R1

1
 

and R1
2
; TIB = 9 h; black bars). The second cycle consisted of 3 nights of sleep manipulation (M2

1
 to M2

3
) and 2 nights of recovery sleep (R2

1
 and R2

2
; 

black bars). During both sleep manipulation periods, participants had nocturnal TIBs of 5 h (5 h group; red bars) or 6.5 h (6.5 h group; orange bars). A 
cognitive test battery (green bars) was administered daily at 10:00, 15:45–16:00, and 20:00, except during the first and last days of the protocols.
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Psychomotor vigilance task
During the 10-min PVT [6], a counter on the computer screen 

started counting at random intervals varying from 2000  ms to 

10 000 ms. Participants were instructed to press the spacebar as 

quickly as possible whenever the counter started. A tone was pre-

sented via the participants’ earphones if they failed to respond 

10 000 ms after stimulus onset. The primary outcome measure 

was the daily average of the number of lapses (response times ≥ 

500 ms), as it is known to be one of the most sensitive measures to 

the effects of sleep loss [13, 30]. Secondary outcome measures of 

interest included the daily averages of median reaction time (RT) 

and standard deviation in reaction time (SD RT) in ms because 

these measures were also sensitive to the effects of partial sleep 

deprivation.

For each participant, linear regression was conducted to derive 

the slope of each PVT measure from the last baseline day (B
2
) 

to the last manipulation day in the first cycle (M1
5
) for quan-

tifying  the deterioration in vigilance during the first week of 

sleep restriction (i.e. slope
wk1

). Similarly, a slope (i.e. slope
wk2

) was 

derived for each participant for the second sleep restriction week 

using data from the last recovery day in the first cycle (R1
2
) to the 

last manipulation day in the second cycle (M2
3
). The difference 

between these two slopes (i.e. slope
wk2

–
wk1

) was used to indicate 

whether an individual’s vigilance deteriorated faster or slower 

during the second relative to the first week of sleep restriction, 

and in other words, was a measure of the vigilance vulnerability 

to recurrent cycles of sleep restriction.

PVT RT data for all three sessions on the last baseline day (B
2
) 

were fed into a mixed estimator function for generating DDM 

metrics. This function segments each decision-making process 

into the decision (cognitive) and non-decision (physiological 

response) components, quantifiable as the drift rate and non-de-

cision time for the respective components (for a detailed concep-

tual and mathematical breakdown of this process, refer to [31]). 

This function collapses data from separate PVT sessions within 

the baseline day and generates the DDM metrics based on the 

day’s performance. This pipeline is a replica of the one-choice 

DDM paradigm used in Patanaik et al. [20, 22]. Of particular inter-

est in this study are the DDM metrics generated for the last base-

line day (B
2
), including the range in the non-decision time and 

the average in drift rate, which were used as variables to predict 

inter-individual differences in vigilance vulnerability during mul-

ti-night sleep restriction.

Statistical analysis
Statistical analyses were conducted with SAS 9.4 (SAS Institute, 

Cary, NC). Group differences in the demographic and sleep-re-

lated measures taken at the screening stage (Table 1) were exam-

ined with independent-sample t-tests and chi-squared tests. 

Mixed models with week as a within-subject factor, group as a 

between-subject factor and slope as the dependent variable were 

used to test whether performance deterioration across the first 

and the second weeks of sleep restriction differed between the 

5 h and the 6.5 h groups.

Multiple regression analyses were used to determine if PVT 

summary metrics (the number of lapses, median RT, or SD RT) 

and two DDM metrics (the average in drift rate and range in the 

non-decision time) derived from day B2 could predict inter-indi-

vidual differences in vulnerability during 1 week of sleep restric-

tion (slope
wk1

) and vulnerability to recurrent cycles of sleep 

restriction (slope
wk2

–
wk1

).

Results

Sample characteristics
The two groups did not differ significantly at the screening stage, 

except for actigraphically assessed TIB on weekdays and sleep 

efficiency (p = .02 and p < .001; Table 1). Nevertheless, the TIB dif-

ference was not found with the PSQI (p = .26), and importantly, 

no significant group difference was found for actigraphically 

assessed TST (p = .41).

Vigilance deterioration during the first and 
second weeks of sleep restriction
A significant week × group interaction was found for all three PVT 

outcome variables (p < .007; Table 2). The two groups showed sim-

ilar rates of increase in lapses, median RT, and SD RT in the first 

week of sleep restriction (p > .89), but during the second week, per-

formance deteriorated faster in the 5 h group than the 6.5 h group 

(p < .001). Moreover, all three variables increased significantly 

faster in the second week of sleep restriction compared to the first 

week in the 5 h group (p < .001), but not in the 6.5 h group (p > .48).

Predicting vigilance decrement during sleep 
restriction with baseline performance
Prominent inter-individual differences in PVT performance were 

observed among adolescents during both the first and second 

Table 2. Deterioration in Psychomotor Vigilance Test (PVT) performance of the two groups in the first and second weeks of sleep 
restriction

 Slope
wk1

Slope
wk2

Week effect Group effect Week × group interaction 

Mean SEM Mean SEM p p p

Number of lapses

  5 h group 1.78 0.39 4.75 0.39 <.001 <.001 <.001

  6.5 h group 1.77 0.39 1.90 0.39

Median RT (ms)

  5 h group 11.75 21.54 123.73 21.54

  6.5 h group 15.84 21.17 5.70 21.17 .02 .009 .007

SD RT (ms)

  5 h group 63.38 26.28 303.40 26.28 <.001 <.001 <.001

  6.5 h group 64.54 25.82 86.72 25.82

RT = reaction time; SD RT = standard deviation in reaction time; mean and standard error of the mean (SEM) were derived from the mixed models.
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cycles of sleep restriction (Figure 2). Faster accumulation of lapses 

during the first week of sleep restriction was significantly associ-

ated with more lapses at baseline (p = .02; Figure 3, A), but not the 

two baseline DDM metrics (p > .07; Table 3). None of the baseline 

PVT measures was found to be associated with the increase in 

median RT and SD RT across the first sleep restriction cycle (p > 

.16; Table 3).

On the other hand, individuals with the faster accumulation of 

lapses in the second relative to the first week of sleep restriction 

were found to have lower drift and smaller number of lapses (p = 

.005 and .001; Table 3 and Figure 3, B) on the baseline day, while 

no significant association was found for non-decision time range 

at baseline (p = .11). Lower drift at baseline also predicted greater 

increment in the slope of SD RT from the first to the second week 

of sleep restriction (p = .007; Supplementary Figure S1), but the 

association was not significant for median RT (p = .13).

Discussion

We used data from two multi-night sleep restriction protocols 

conducted on adolescents to compare the relative contributions 

of summary and DDM metrics at baseline in predicting vigilance 

declines. We found that declines in vigilance accrued more rap-

idly in the second cycle of partial sleep deprivation (after 2 nights 

of recovery sleep) than in the first cycle, particularly when sleep 

restriction was severe. Furthermore, average drift predicted faster 

declines in vigilance performance from the first to the second 

week on two out of three measures of interest (lapses and SD 

RT), but not the decrement in the first week. The reverse was 

true of lapses at baseline, suggesting that summary metrics and 

DDM measures predict different facets of vulnerability to sleep 

curtailment.

Several published studies have shown that baseline PVT lapses 

are the most consistent predictors of vulnerability to total and 

partial sleep loss. Chua et al. [19] exposed a group of healthy vol-

unteers to 26 h of total sleep deprivation, and demonstrated that 

vulnerable (bottom tertile) performers differed significantly from 

resilient (top tertile) performers in the number of lapses, aver-

age RT, and SD RT in baseline PVT performance. They concluded 

that sleep deprivation amplifies subtle individual differences in 

Figure 2. Inter-individual differences in the number of Psychomotor 
Vigilance Test (PVT) lapses during two cycles of sleep restriction and 
recovery. The averages of the 5 h and the 6.5 h groups are plotted in red 
and blue respectively. Individual data are shown in dark red for the 5 h 
group and dark blue for the 6.5 h group. Refer to Figure 1 legend for a 
detailed explanation of the study days.

Figure 3. Associations between baseline Psychomotor Vigilance Test (PVT) performance and deterioration in vigilance during the first and second 
weeks of sleep restriction. (A) More lapses in attention at baseline were significantly associated with a faster increase in lapses during the first week 
of sleep restriction (B = 0.16, SE = 0.07, p = .02). This association was controlled for TIB and the two drift-diffusion modelings (DDM) parameters (non-
decision time range and drift average) at baseline. (B) Higher drift average at baseline was significantly associated with a greater increment in the rate 
of lapse increase from the first to the second week of sleep restriction (B = −0.40, SE = 0.13, p = .005). This association was controlled for TIB, as well as 
the number of lapses and non-decision time range at baseline.
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vigilance that are already present in the baseline, well-rested 

state. In a later study using linear discriminant modeling, Chua 

et al. [24] were able to classify participants into performance 

bands with relatively high sensitivity (78%) and specificity (86%) 

based on a reliable set of baseline PVT features. Others have also 

reported that pattern recognition using PVT and other data from 

a single testing session at baseline could be used to classify per-

formance impairment after a night of total sleep deprivation [32]. 

Regarding vulnerability during multi-night partial sleep loss, in a 

large (N = 306) sample of healthy adults undergoing sleep restric-

tion to 4 h per night for 5 nights, Galli et al. [17] reported that 

lapses in vigilant attention at baseline were the strongest predic-

tor of subsequent decrements.

Other than summary task metrics, some variables derived 

from DDM appear useful in predicting vigilance vulnerability dur-

ing total sleep loss. Patanaik et al. [22] used summary PVT met-

rics, DDM parameters, and wavelet metrics from 180 participants 

who had undergone a night of total sleep deprivation to classify 

vulnerable and resilient individuals. They found that the DDM 

metrics of diffusion drift, and non-decision time range emerged 

among the top predictive features. Studies have shown that drift 

rates in general [33, 34] and at baseline [20, 22] are correlated to 

PVT performance during sleep deprivation, demonstrating the 

high consistency and reliability of this association. The present 

study is in agreement with Patanaik et al. [20, 22], showing that 

drift rate at baseline is indicative of how resilient an adolescent 

is to performance deficit during recurrent sleep restriction, albeit 

non-decision time did not have any predictive value in the cur-

rent analysis.

Taken together, our results support and extend the existing lit-

erature by demonstrating the robustness of using summary PVT 

and DDM metrics to predict vigilance vulnerability among ado-

lescents undergoing multi-night sleep restriction. Interestingly, 

the predictive value of baseline lapses was only seen for the first 

week of sleep restriction, whereas DDM metrics were associated 

with the additional decrement in the second cycle. These results 

suggest that there may be mechanistic differences between 

short- and longer-term vulnerability, which is further supported 

by the significant difference in the slope of performance declines 

between weeks 1 and 2 of the protocol for the 5 h group. Recurrent 

cycles of sleep restriction in adolescents may thus expose insta-

bility that is more specifically related to information accumula-

tion, possibly as the 2 nights of recovery sleep may have lowered 

the propensity to lapse in certain individuals.

Table 3. Predicting inter-individual differences in vigilance vulnerability to one and two weeks of sleep restriction with baseline 
Psychomotor Vigilance Test (PVT) metrics

 B SE p 

Slope
wk1

Number of lapses

  Baseline number of lapses 0.16 0.07 .02

  Baseline non-decision time range 25.48 13.92 .07

  Baseline drift average −0.03 0.07 .66

Median reaction time (RT)

  Baseline median RT 0.15 0.10 .16

  Baseline non-decision time range −20.65 173.31 .91

  Baseline drift average −0.70 0.95 .47

Standard deviation (SD) in RT

  Baseline SD RT 0.20 0.14 .17

  Baseline non-decision time range 865.36 874.96 .33

  Baseline drift average 0.54 3.82 .89

Slope
wk2–wk1

Number of lapses

  Baseline number of lapses −0.45 0.13 .001

  Baseline non-decision time range −45.90 28.05 .11

  Baseline drift average −0.40 0.13 .005

Median RT

  Baseline median RT −1.01 1.02 .33

  Baseline non-decision time range −9.76 1708.11 .99

  Baseline drift average −14.33 9.35 .13

SD RT

  Baseline SD RT −0.48 0.27 .08

  Baseline non-decision time range −803.42 1685.52 .64

  Baseline drift average −20.61 7.37 .007

Slope
wk1

 quantified the changes in the number of lapses, median RT, and SD RT during the first week of sleep restriction. Slope
wk2–wk1

 quantified the difference in 
the rates of performance deterioration between the first and the second weeks of sleep restriction and thus, represented each participant’s vulnerability to two 
cycles of sleep restriction with intervening recovery sleep. Group was included as a covariate in all the regression models.
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Here, we showed for the first time that baseline data contain 

more predictive information (beyond lapses, in the form of DDM 

metrics) that capture vulnerability on different time scales—that 

the predictive strength of lapses and DDM metrics on subsequent 

PVT performance after sleep deprivation is contingent on the 

length of the sleep restriction period. As this is the first time such 

an effect has been reported, further replication is needed to con-

firm this effect and explore its underlying mechanisms.

Over the last century, there has been a steady trend towards ado-

lescents getting less sleep [35], although lockdowns necessitated by 

the COVID-19 pandemic may have recently reversed this decline by 

increasing sleep opportunities [36, 37]. In Asia, sleep curtailment is 

common, with adolescents reporting shorter sleep on school nights 

and greater daytime sleepiness than their counterparts in Europe 

and North America [38]. For example, 85% of adolescent students 

in Singapore report sleeping less than the recommended 8–10 h a 

night [29] on school nights [39]. While the problem of sleep curtail-

ment in adolescents arises from a complex interplay of biological 

and psychosocial factors [40], prioritization of school work and aca-

demic achievement is a key factor for sacrificing TIB in some Asian 

societies [41]. Paradoxically, because of its effects on vigilance and 

cognition, insufficient sleep itself negatively affects school perfor-

mance [42, 43], rendering this a questionable sacrifice at best.

Against this backdrop, the ability to predict vulnerability to 

sleep loss may be a useful aid to those balancing life commitments 

against sleep needs. For the especially vulnerable, understanding 

this trait may aid them in making more informed decisions about 

their time use, and how much time to spend in bed.

Limitations and future studies
The current sample consisted of adolescents. Thus, whether in 

other age groups, baseline summary PVT and DDM metrics dif-

ferentially predict inter-individual differences in vigilance vulner-

ability during a single week or more weeks of sleep restriction 

remains to be addressed in future studies. Moreover, given that 

vigilance is the cognitive domain most impaired by sleep loss 

[1, 7, 13, 44], most published studies and the current investiga-

tion focused on finding predictors of vigilance performance dur-

ing total and partial sleep deprivation. More work is required to 

investigate whether, for other cognitive domains, performance at 

a well-rested state can predict performance in the same task in 

a sleep-restricted or sleep-deprived state. Finally, as the analy-

ses performed here in this paper were post hoc, they should be 

treated as exploratory, and confirmatory investigation is needed.

Conclusions

In a similar fashion to adults, summary and DDM metrics at 

baseline may be useful predictors of vulnerability to sleep restric-

tion in adolescents, indicating that these individual differences 

are relevant to performance even at that maturational stage.
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Supplementary material is available at SLEEP Advances online.
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