
1

SLEEP, 2022, 1–13

https://doi.org/10.1093/sleep/zsac129

Advance Access Publication Date: 11 June 2022

Original Article

Submitted: 28 January, 2022; Revised: 20 May, 2022

Original Article

Within-night repeatability and long-term consistency 

of sleep apnea endotypes: the Multi-Ethnic Study of 

Atherosclerosis and Osteoporotic Fractures in Men Study

Raichel M. Alex, Tamar Sofer , Ali Azarbarzin , Daniel Vena , Laura K. Gell, 

Andrew Wellman, David P. White, Susan Redline and Scott A. Sands*

Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

*Corresponding author. Scott A. Sands, Division of Sleep Medicine, Brigham and Women’s Hospital, 221 Longwood Ave, Boston, MA 02115, USA. Email: 

sasands@bwh.harvard.edu.

Abstract
Study Objectives: Obstructive sleep apnea (OSA) is characterized by multiple “endotypic traits,” including pharyngeal collapsibility, muscle compensation, loop gain, and 

arousal threshold. Here, we examined (1) within-night repeatability, (2) long-term consistency, and (3) influences of body position and sleep state, of endotypic traits 

estimated from in-home polysomnography in mild-to-severe OSA (apnea-hypopnea index, AHI > 5 events/h).

Methods: Within-night repeatability was assessed using Multi-Ethnic Study of Atherosclerosis (MESA): Traits derived separately from “odd” and “even” 30-min 

periods were correlated and regression (error vs. N windows available) provided a recommended amount of data for acceptable repeatability (R
threshold

 = 0.7). Long-term 

consistency was assessed using the Osteoporotic Fractures in Men Study (MrOS) at two time points 6.5 ± 0.7 years apart, before and after accounting for across-year 

body position and sleep state differences. Within-night dependence of traits on position and state (MESA plus MrOS data) was estimated using bootstrapping.

Results: Within-night repeatability for traits ranged from R = 0.62–0.79 and improved to R = 0.69–0.83 when recommended amounts of data were available (20–35 

7-min windows, available in 94%–98% of participants); repeatability was similar for collapsibility, loop gain, and arousal threshold (R = 0.79–0.83), but lower for 

compensation (R = 0.69). Long-term consistency was modest (R = 0.30–0.61) and improved (R = 0.36–0.63) after accounting for position and state differences. Position/

state analysis revealed reduced loop gain in REM and reduced collapsibility in N3.

Conclusions: Endotypic traits can be obtained with acceptable repeatability. Long-term consistency was modest but improved after accounting for position and state 

changes. These data support the use of endotypic assessments in large-scale epidemiological studies.

Clinical Trial Information: The data used in the manuscript are from observational cohort studies and are not a part of the clinical trial.
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Statement of Significance

Obstructive sleep apnea is caused by pathophysiological mechanisms or “endotypic traits,” including upper airway collapsibility, arousal 

threshold, ventilatory stability (loop gain), and upper airway muscle compensation. Quantifying these traits using routine polysomnography 

may help to disentangle sources of disease heterogeneity. Our study is the first to quantify within-night measurement error, longitu-

dinal (over 6.5 years) consistency, and the impact of the changes in body position and sleep states for these key endotypic traits in large 

community-based studies. Trait consistency across years is comparable to that of the apnea-hypopnea index. This information supports 

the utility of using these traits for clinical and research purposes and provides guidance on how to optimize trait reliability.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/4
5
/9

/z
s
a
c
1
2
9
/6

6
0
6
0
2
2
 b

y
  s

u
p
p
o
rt o

n
 2

0
 S

e
p
te

m
b
e
r 2

0
2
2

https://orcid.org/0000-0001-8520-8860
https://orcid.org/0000-0002-4986-4753
https://orcid.org/0000-0003-1740-8777
mailto:sasands@bwh.harvard.edu?subject=


2 | SLEEP, 2022, Vol. 45, No. 9

Introduction

Obstructive sleep apnea (OSA) is a heterogeneous disorder 

caused by variable combinations of anatomic risk factors, 

obesity, and deficits in multiple endotypic traits, namely 

greater pharyngeal collapsibility, reduced upper airway di-

lator muscle compensation, unstable respiratory control 

(high loop gain), and a low arousal threshold [1–4]. Notably, 

an estimated 69% of OSA patients exhibit deficits in one or 

more endotypic traits (upper airway collapsibility, low arousal 

threshold, and high loop gain) [3]. Accumulating evidence 

indicates that individual differences in pathophysiological 

endotypic traits, estimated using polysomnographic airflow 

and an estimated ventilatory drive signal [5–7], may provide 

predictive insight into how well patients respond to multiple 

non-CPAP treatments for OSA. For example, elevated loop gain 

is associated with reduced efficacy of pharyngeal surgery, oral 

appliances, hypoglossal nerve stimulation, and atomoxetine-

plus-oxybutynin, but is associated with increased efficacy 

of supplemental oxygen [8–13]. Greater pharyngeal muscle 

compensation is associated with increased efficacy of sup-

plemental oxygen, hypoglossal nerve stimulation, and 

atomoxetine-plus-oxybutynin but reduced oral appliance ef-

ficacy [10–12]. A  lower arousal threshold is a risk factor for 

reduced efficacy of hypoglossal nerve stimulation [13]. More 

severe collapsibility is likely to be a risk factor for reduced 

efficacy for a range of CPAP alternatives [10]. Estimation of 

endotypic traits may be a promising approach to characterize 

subgroups of patients with different underlying risk fac-

tors for OSA, who potentially could benefit from alternative 

treatments.

In physiology laboratories, endotypic traits can be obtained 

by invasive measurements such as intraesophageal diaphragm 

EMG [6, 14] or using specialized CPAP manipulations [15, 16]. To 

facilitate widespread use of endotypic traits beyond the physi-

ology laboratory, we developed a method to non-invasively es-

timate the endotypic traits from a diagnostic polysomnography 

(PSG) using a nasal cannula signal, without the need for CPAP 

manipulation or specialized measurements [5–7]. Briefly, the 

method involves estimating ventilation and ventilatory drive 

throughout the night to calculate the traits; median values for 

each trait are then taken to represent the pathophysiology of 

each individual. However, several practical questions must be 

addressed before these trait measures will be ready for future 

clinical or epidemiological applications: how much data are 

needed to obtain a repeatable measurement within a night? 

Are some trait measures more reliable than others? Are trait 

measurements consistent across multiple years? To what ex-

tent do changes in body position and sleep state influence the 

estimates?

Accordingly, in this study, we leveraged existing in-home 

PSG data collected in large community-based samples of 

middle-aged or older individuals to determine (1) the within-

night repeatability (measurement error) of the endotypic 

traits, using cross-sectional data from the Multi-Ethnic Study 

of Atherosclerosis (MESA), (2) the long-term consistency (ap-

proximately 6.5  years) of endotypic traits, which reflects 

both physiological variability plus measurement error, using 

polysomnographic data from the longitudinal Osteoporotic 

Fractures in Men Study (MrOS), and (3) influences of body pos-

ition and sleep state on endotypic traits measurements using 

both MESA and MrOS.

Methods

Participants and study design

Multi-Ethnic Study of Atherosclerosis (MESA). The MESA is a U.S.-

based prospective cohort study designed to assess risk factors for 

cardiovascular disease (CVD) in white, black/African American, 

Hispanic, and Chinese adults [17, 18]. At baseline (Exam 1; 

2000–2002) 6814 men and women, ages 45–84  years without 

clinically apparent CVD, were recruited and followed longitu-

dinally with additional assessments. A  subgroup participated 

in the MESA Sleep Ancillary Study (MESA Exam 5, 2010–2013, 

N  =  2237) which included in-home PSG (Compumedics Somte 

System, Compumedics Ltd., Abbotsville, AU) that recorded elec-

troencephalography, electrooculography, chin electromyog-

raphy, electrocardiography, thoracoabdominal movements, 

finger pulse oximetry, and airflow (assessed by thermistor and 

nasal pressure cannula). Sleep, arousals, and respiratory events 

were scored by research technicians blinded to all other data 

according to standard criteria as summarized before [19, 20]. 

In this analysis, apneas were identified by >90% airflow reduc-

tion from pre-event baseline for ≥10 s; hypopneas were defined 

as ≥30% airflow reduction with ≥3% desaturation or arousal. In 

total, 2060 participants provided polysomnographic recordings 

for potential analysis. 

The Osteoporotic Fractures in Men Study (MrOS). Between 2000 

and 2002, 5994 community-dwelling men, 65  years or older, 

were enrolled at six clinical centers in a baseline examination 

of the Osteoporotic Fractures in Men Study (MrOS) [21] to assess 

risk factors for falls, fractures, and mortality. An ancillary sleep 

study was conducted between 2003 and 2005 to understand the 

relationship between sleep disorders and adverse outcomes. 

Unattended PSG (Sleep Visit 1)  was conducted in 2907 partici-

pants using a similar protocol and equipment as in MESA [22, 23]. 

Between 2009 and 2012, a second sleep study assessment (Sleep 

Visit 2) was completed in 1055 participants who also participated 

in Sleep Visit 1, of whom 1026 provided polysomnographic re-

cordings for potential analysis. During both sleep study visits, 

PSG was performed using a multichannel portable monitor 

(Compumedics Safiro Sleep Monitoring System, Compumedics 

Ltd., Abbotsville, Australia) that recorded electroencephalography, 

electrooculography, chin electromyography, electrocardiography, 

thoracoabdominal movements, finger pulse oximetry, and air-

flow assessed by thermistor and nasal pressure cannula. Sleep, 

arousals, and respiratory events were scored by the same Sleep 

Reading Center as for MESA; apneas and hypopneas were simi-

larly defined in these analyses [19, 20]. Mean follow-up time be-

tween sleep visit 1 and 2 was approximately 6.5 years (SD = 0.7).

For both MESA and MrOS, inter- and intra-scoring reliability 

of the AHI were high (inter/intraclass correlations > 0.94).

Estimation of endotypic traits

From both MESA and MrOS polysomnograms, endotypic traits 

were estimated for non-REM and REM sleep using established 

automated methods [5–7]. In this method, the nasal pressure 

signal was linearized to provide a surrogate of ventilatory 

flow, that in turn was integrated to provide an uncalibrated 

breath-to-breath ventilation signal (tidal volume × respiratory 

rate). The ventilation signal was normalized such that 100% 

approximates eupneic ventilation. Subsequently, windows of 

polysomnographic data containing sleep were identified (7-min 
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duration, 2  min steps; see [5]). “Ventilatory drive”—defined as 

the intended ventilation that would be seen if the pharyngeal 

airway was unobstructed—was estimated for each data window. 

Theoretically, the ventilatory drive becomes evident when the 

airway is reopened following an obstructive respiratory event. 

Ventilatory drive was calculated using the ventilation signal 

input to a simplified chemoreflex feedback control model; model 

parameters (gain, response time, delay) were adjusted to best 

fit the ventilatory drive signal to the ventilation signal between 

scored obstructive events [5, 24, 25]. Models were fit separately 

for each available 7-min window containing sleep. Using the 

derived ventilation and ventilatory drive signals, the following 

endotypic traits can be estimated.

Loop gain.  Two measures of loop gain were estimated for each 

7-min window. LG
1
, represents the sensitivity of the ventila-

tory feedback loop, i.e. the magnitude of the ventilatory drive 

response to a specific 1 cycle/min disturbance. This reflects the 

product of chemoreflex sensitivity (hypoxic/hypercapnic venti-

latory response) and plant gain (e.g. lung volume). We also esti-

mated the overall ventilatory instability (LG
n
, predisposition to 

cyclic central sleep apnea) that is the combined effect of sen-

sitivity and delay (latency between reduced ventilation and 

increased ventilatory drive). Median values were used to sum-

marize multiple windows.

Arousal threshold. The ventilatory drive immediately prior to 

each scored EEG arousal (e.g. at the termination of a respira-

tory event) was identified, and the arousal threshold was cal-

culated as the mean value of these ventilatory drive values for 

each 7-min window. Lower values reflect greater arousability 

from sleep [7]. Median values were used to summarize multiple 

windows.

Pharyngeal collapsibility and compensation. Breath-by-breath 

values of ventilation and the ventilatory drive were tabulated 

(excluding breaths during arousals and within two breaths after 

arousals/sleep onset) from all available windows. Next, breaths 

were sorted into 10 bins (deciles) based on ventilatory drive; 

for each bin, median values of ventilation and ventilatory drive 

were obtained and plotted. Linear interpolation between bins 

was then used to find the median ventilation at normal drive 

(“Vpassive”) [26, 27]; a lower Vpassive reflects a greater collaps-

ibility. To calculate compensation, we first calculate Vactive (me-

dian ventilation when drive is at the arousal threshold, i.e. 

maximal); Vactive minus Vpassive is the pharyngeal muscle 

compensation.

Analysis was automated and executed using custom software 

(Phenotyping Using Polysomnography; MATLAB, Mathworks, 

Natick, MA).

Artifact rejection for nasal pressure signal.  A major challenge for 

estimation of ventilation using nasal pressure is that the re-

spiratory airflow signal can occasionally be contaminated by 

noise, e.g. when the intranasal pressure swings are small, when 

the cannula prongs are no longer in the nares, when there is 

nasal congestion, or in the presence of severe mouth breathing 

(or when the noise floor of the device is high). To automatically 

reject 7-min windows with low signal-to-noise ratio (SNR) and/

or unusually small airflow signals, we (1) calculated SNR as the 

nasal pressure signal power in the respiratory range (0.1–1 Hz) 

versus noise in the higher frequency range (1–10 Hz), and (2) cal-

culated signal magnitude (again power in 0.1–1 Hz range) com-

pared with typical power for the night (mean signal magnitude 

on a log scale of all data with SNR > 10 units) [28]. If 10% or 

more of a window exhibited small and/or noisy signals (product 

of SNR and signal magnitude < 0.125) that window was excluded 

from further analysis. Based on this approach, ~80% of the nasal 

pressure data during sleep was considered noise free and suit-

able for further analysis (MrOS visit 1: 80 ± 26%, MrOS visit 2: 

72 ± 30%, MESA: 87 ± 22%, mean±SD).

Since only windows containing respiratory events were sub-

sequently used, the proportion of the night used for trait calcu-

lation was ~50% (MrOS visit 1: 53 ± 25%, MrOS visit 2: 50 ± 27%, 

MESA: 60 ± 25%)

Statistical analysis

Quantification of the within-night repeatability and the 

long-term consistency of endotypic traits were obtained for 

participants with OSA (AHI > 5)  in MESA and MrOS sleep visit 

datasets. Five endotypic traits variables were analyzed: col-

lapsibility (Vpassive), compensation, loop gain (LG
1
), ventila-

tory instability (LG
n
), and arousal threshold (defined above). 

Collapsibility (Vpassive) and arousal threshold data were 

square-root transformed [12] (centered at 100%
eupnea

) for nor-

mality; transformed variables are presented throughout the 

manuscript.

Within-night repeatability.  To describe within-night measure-

ment error (in MESA), two fully independent endotypic sets of 

trait measurements were obtained for each PSG by dividing the 

sleep data into “odd” and “even” 30-min periods that were ana-

lyzed separately. Any 7-min endotypic trait calculation windows 

that overlapped successive odd and even periods were removed 

to obtain independent odd and even trait estimates. To quan-

tify repeatability, we calculated the coefficient of repeatability 

(CR) and Pearson correlation coefficient (R) between even and 

odd estimates. (Intraclass correlation coefficients were also 

calculated and provided near identical estimates, see Online 

Supplementary Table S1). CR provides an upper bound (95th cen-

tile) on the absolute difference between two repeated measure-

ments and can be used to quantify repeatability in a manner that 

includes both mean bias as well as uncertainty [29]; if there is no 

mean bias the CR is simply equal to the width of the 95% limits 

of agreement (upper minus lower divided by 2). In addition, we 

modeled how repeatability (R-value) varied with the amount of 

available data (number of windows N): mean squared error for 

each pair of odd-even data (squared difference between “even” 

and predicted even values [based on odd values], normalized by 

mean squares) were plotted against window number N, and a 

hyperbolic link function was fit to the data (squared error falls 

as N rises). Model equation was given by: error = 1/(β
0
 + β

1
[N win-

dows]). R was calculated from [1−error]0.5 for any given N. From 

these models, we calculated the recommended number of win-

dows required for obtaining a minimally acceptable “repeatable 

estimate” using R
threshold

 = 0.7. The coefficient of repeatability and 

correlation coefficients were then recalculated for the subset of 

participants who met the minimum data requirements to de-

scribe repeatability. We also calculated the percentage of parti-

cipants who would have enough data from the whole night to 

provide a repeatable trait measure. To provide a comparison, an 
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analysis of AHI was performed using total sleep time to describe 

the amount of data required.

Long-term consistency. To describe long-term consistency 

(in MrOS), we compared measurements of endotypic traits 

obtained at sleep visit 1 and sleep visit 2 (mean follow-up time 

of 6.5  years). Because our goal was to assess the long-term 

consistency in physiological mechanisms, or “trait like” phe-

nomena, our analytic approach was to minimize the impact 

of measurement noise. Hence, we analyzed participants with 

a sufficient number of windows to provide reliable trait esti-

mates (R
threshold

  =  0.7, obtained from MESA above). The same 

approach was taken for AHI, to provide a benchmark for 

interpreting consistency. The similarity between the traits at 

sleep visit 1 vs. 2 were obtained by correlation analysis, the co-

efficient of repeatability and Bland-Altman limits of agreement 

(Intraclass correlation coefficients were also calculated and 

provided near identical estimates, see Online Supplementary 

Table S2). Furthermore, correlation analysis was also repeated 

after adjusting traits and AHI for between-study changes in (1) 

body position, (2) REM sleep duration, and finally (3) non-REM 

stages N1 and N3 duration (expressed as fraction of sleep time). 

Specifically, multivariable regression analysis modeled the dif-

ference between traits at visit 1 and visit 2 as a function of dif-

ferences in position and state (∆trait = ∆position + ∆REM + ∆N1 + 

∆N3). The predicted difference (∆trait) was then added to trait 1 

values to provide a position and state-corrected trait 1 value for 

comparison with trait 2 values.

Influences of body position and sleep state. To describe the depend-

ence of each trait on differences in time spent in different body 

positions (supine vs. lateral) or sleep states, we pooled data from 

MESA and MrOS sleep visit 1. Bootstrapping was performed to 

provide 50 modified “versions” of each sleep study made from 

the original study by resampling windows at random (with re-

placement). Due to random resampling, data in each version 

contained slightly different proportions of body positions and 

sleep states, which were tabulated with recalculated trait values. 

Mixed-model analysis (subject as a random effect) quantified 

associations between each trait and body position and sleep 

states. AHI was similarly analyzed for comparison. A  mean-

ingful association was considered as a change in trait values 

of above 0.5 % SD per %time (SD for each trait is taken from the 

across-sample population).

Results

Within-night repeatability of endotypes in MESA

From the initial 2060, MESA Sleep participants, 27 studies were of 

insufficient quality for scoring (did not provide AHI values), 215 

participants had AHI < 5, a further 44 participants did not gen-

erate any endotype traits (e.g. noisy flow signal/ no good quality 

nasal pressure during respiratory events), leaving N = 1774 avail-

able for analysis (Table 1). A further 24 participants did not have 

3 windows with respiratory events for any endotypic analysis in 

both odd and even 30-min periods leaving N = 1750 available for 

within-night repeatability assessment.

Figure 1 shows illustrative plots of ventilation vs. ventila-

tory drive and endotypic traits during odd and even periods for 

individual examples. Note that, visually, plots are very similar 

within individuals, but large differences across individuals are 

apparent. The average values of endotypic traits and AHI for the 

entire night (Trait Averages), odd period (“Odd” Estimate), and 

even period (“Even” Estimate) are given in Table 2. On average, 

the number of 7-min analysis windows (N Windows in Table 2) 

available for deriving the odd and even estimates of endotypic 

traits ranged from 31 ± 14 for arousal threshold to 53 ± 21 for col-

lapsibility and compensation (nb. windows for arousal threshold 

require presence of scored arousals). An average total sleep time 

of 180 ± 40 min was available for assessing the odd and even AHI 

estimates. The correlation coefficients between odd and even 

estimates of endotypic traits (Table 2, Figure 2 top panel) ranged 

from 0.62–0.79; collapsibility (Vpassive) exhibited the highest 

within-night repeatability (R = 0.79), and compensation exhib-

ited the lowest value (R = 0.62). Within-night repeatability of AHI 

was very high, R = 0.92. To illustrate the agreement between odd 

and even estimates and their variability over time, we have in-

cluded the Bland-Altman plot (Figure 2, middle panel) and the 

coefficient of repeatability (Table 2). Limits of the agreement are 

also shown on the “correlation” X-Y plots (Figure 2 top panel) to 

facilitate interpretation of agreement.

Repeatability (assessed as measurement error) was im-

proved in association with higher numbers of available analysis 

windows (Table 2, right). Based on these associations, the recom-

mended number of windows needed to obtain R ≥ 0.7 ranged 

from 20 for arousal threshold to 35 for compensation. These 

numbers are equivalent to 26%–27% of the available number of 

windows over a whole night (77 ± 35 and 131 ± 53 respectively, 

Total N Windows in Table 2), illustrating that at least a quarter 

of a typical night is needed. By contrast, 45 min of sleep time 

was required for a repeatable AHI measure (~13% of the avail-

able 359  ±  81  min). Overall, the majority of the participants 

(94%, Figure 2 bottom panel) had the recommended number of 

windows for all endotypic traits (> 99% for AHI). After restricting 

analysis of repeatability to participants who had enough data to 

meet the R = 0.7 threshold, correlation coefficients ranged from 

0.69–0.83; collapsibility (Vpassive) was R = 0.83 and compensa-

tion was R  =  0.69. Furthermore, accounting for differences in 

body position and state (odd vs. even) had a negligible impact 

on repeatability (≤ 2%, results not shown). Coefficient of repeat-

ability was calculated again after restricting the analysis to par-

ticipants who had enough data (Table 2, right), which showed 

improvement (smaller CR) for endotypic traits.

Long-term consistency of endotypes in MrOS

Out of the 2906 MrOS participants at Sleep Visit 1, 39 studies 

were of insufficient quality for scoring, 268 participants had AHI 

< 5209 participants did not provide any endotype traits (noisy 

flow signal/ no good quality nasal pressure during respiratory 

events), leaving N = 2390 available for analysis (Table 1).

A subset of visit 1 participants (n  =  1026) had a follow-up 

sleep visit 2 (mean follow-up = 6.5 ± 0.7 years). Of these, 775 par-

ticipants had OSA (AHI ≥5) and provided endotypic traits, 665 

of whom also had paired measurements (AHI ≥5 and endotypic 

traits calculated) at visit 1.  Based on the “minimum reliable” 

thresholds for the amount of data required for a valid measure-

ment (R
threshold

 = 0.7), 595 (89.5%) participants provided “reliable” 

endotypic trait data for consistency analysis.
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Changes over time. Compared to visit 1 (mean age 74.7 years), at 

Visit 2 (mean age 81.0 years) there was an increase in compensa-

tion (+2.5 [0.3, 4.6] %
eupnea

, estimate[95%CI]), a decrease in arousal 

threshold (−4.5 [−6.8, −2.2] %
eupnea

), and increase in AHI (4.1 [2.9, 

5.2] events/h, see Table 3). Changes in collapsibility and loop 

gain were not detected. In addition to this mean bias, we also 

included Bland-Altman’s limits of agreement (Figure 3, Table 3) 

to provide the agreement interval within which 95% of the dif-

ferences between visit 1 and visit 2 fell for the same subjects. 

Coefficient of repeatability metric (Table 3) combined the mean 

bias and limits of agreement into a single variable to summarize 

the across-year uncertainty in original units. As expected, the 

CR values for endotypic traits measured after 6.5  years were 

higher (~2 times or more) compared to the CR values obtained 

from within-night calculations.

The correlation coefficients for endotypic traits and AHI 

across time periods ranged from 0.30–0.61 (Table 3, Figure 3): col-

lapsibility (Vpassive) showed the lowest long-term consistency 

(R = 0.30), and loop gain displayed the highest value (R = 0.61). For 

comparison, long-term consistency of AHI was R = 0.47.

Consistency analysis was repeated after accounting for 

changes in body position and sleep states between the two visits: 

incorporating changes in body position improved the long-term 

consistency for collapsibility (R = 0.35) and arousal threshold (R 

increased from 0.37 to 0.43). Incorporating changes in REM sleep 

duration (% total sleep time) slightly improved long-term con-

sistency of loop gain (R = 0.63). Incorporating changes in REM, 

N1, and N3 sleep durations further improved the consistency of 

collapsibility (R = 0.41).

Influences of body position and sleep state

Overall, the effects of variability in position and state on traits 

in MESA and MrOS were similar to or smaller than the effects 

on AHI, with the exception of a stronger effect of REM on loop 

gain, and stronger effect of N3 on collapsibility (Table 4). As de-

fined a priori, meaningful influences (> 0.5 %SD/%time) were 

observed for: lateral (vs. supine) position on Arousal Threshold 

and AHI, but not the other traits. REM had a meaningful effect 

on loop gain (and ventilatory instability), Arousal Threshold, 

and AHI. Lighter sleep (greater N1) had a meaningful associ-

ation with collapsibility, compensation, loop gain, instability, 

and AHI. Deeper sleep (greater N3) had a meaningful associ-

ation with collapsibility and AHI, but not the other traits. Note, 

however, that even the largest effects were relatively small 

compared with the across-subject variability. For example, add-

itional REM sleep by 10% of total sleep time would yield a re-

duction in estimated loop gain by just 0.03 points (0.175 SD). 

Likewise, additional N3 sleep by 10% of total sleep time would 

yield an improvement in collapsibility (increase in Vpassive) by 

just 1.4%eupnea (0.102 SD).

Discussion

The current study examined (1) within-night repeatability, (2) 

long-term consistency, and (3) dependence on sleep state and body 

position, of polysomnographic endotype measurements in indi-

viduals with mild-to-severe OSA. We found moderate to high levels 

of within-night repeatability for all endotypic traits (R ≥ 0.62), sug-

gesting that measurement error—modest in magnitude—is un-

likely to substantively reduce the utility of these measurements. 

As expected, the within-night repeatability of endotypic traits was 

contingent on the amount of data available. Whereas within-night 

repeatability of the trait measurements was lower than that ob-

served for AHI, restricting analyses to studies that met minimum 

data requirements (20–35 windows) increased repeatability to R ≥ 

0.69. Moreover, even with use of in-home PSG, sufficient data were 

obtained in the majority of participants (94%–98% subjects). Also, 

as expected, long-term consistency of the endotypic traits was 

lower compared to within-night analysis. However, consistency 

of the traits compared well with AHI, and likely reflected multiple 

Table 1. Participant characteristics

Characteristic Median [IQR] N* 

MESA

 Demographics and body habitus

  Age (years) 68 [61–76] 1774

  Sex (N, M:F) 859:915 1774

  Body mass index (kg/m2) 28.1 [25.0–32.0] 1770

 Polysomnography

  OSA severity (N, mild:moderate:severe) 594:592:588 1774

  Apnea-hypopnea index, total (events/h) 21 [12.2–35.0] 1774

   AHI non-REM (events/h) 17.4 [8.8–33.5] 1774

   AHI REM (events/h) 34.1 [19.1–53.2] 1755

  Arousal index (events/h) 20.8 [15.1–29.0] 1774

  Total sleep time (min) 368 [312–414] 1774

  Non-REM 1 (% total sleep time) 12.7 [8.8-–18.5] 1774

  Non-REM 2 (% total sleep time) 57.7 [51.0–64.0] 1774

  Non-REM 3 (% total sleep time) 8.0 [2–15.3] 1774

  REM (% total sleep time) 18.2 [13.6–22.3] 1774

  Supine (% total sleep time) 35.5 [13.0–64.3] 1774

MrOS Sleep Visit 1

 Demographics and body habitus

  Age (years) 76 [72–80] 2390

  Body mass index (kg/m2) 27.0 [25.0–30.0] 2389

 Polysomnography

  OSA severity (N, mild:moderate:severe) 864:854:672 2390

  Apnea-hypopnea index, total (events/h) 19.0 [11.0–32.0] 2390

   AHI non-REM (events/h) 17.0 [9.0–32.0] 2390

   AHI REM (events/h) 25.0 [14.0–39.0] 2381

  Arousal index (events/h) 22.3 [16.2–30.2] 2384

  Total sleep time (min) 361 [317–401] 2390

  Non-REM 1 (% total sleep time) 6.1 [4.1–8.7] 2390

  Non-REM 2 (% total sleep time) 63.0 [56.5–69.4] 2390

  Non-REM 3 (% total sleep time) 10.0 [3.8–16.7] 2390

  REM (% total sleep time) 19.5 [14.7–23.6] 2390

  Supine (% total sleep time) 31.6 [12.0–59.4] 2361

*Sample size N shows the number of participants available out of the 1774 

participants with AHI >5 and endotypic traits for MESA. A subset of these parti-

cipants who had a minimum number of windows (3 windows with respira-

tory events) for any endotypic analysis in both odd and even 30-min periods 

were used for within-night repeatability analysis (N = 1750, with AHI >5 for 

both odd and even 30-min periods and endotypic traits calculated); the subset 

had similar characteristics to the larger sample shown here (age = 68 [61–76], 

BMI = 28.2 [25.0–32.0], AHI = 21 [12.3–35.1]). For MrOS, sample size N repre-

sents the number of participants available out of the 2390 participants who 

had AHI>5 and endotypic traits at sleep visit 1. A subset of MrOS participants 

who had both sleep visit 1 and visit 2 and met criteria for minimum amount 

of data for “reliable” trait measurement were used for longitudinal consistency 

analysis (N = 595, with AHI >5 for both visits and endotypic traits calculated 

for both visits); characteristics of the subset are: At visit 1: age = 74 [71–78], 

BMI = 27 [25.0–29.0], AHI = 19 [11.0–30.0]; At visit 2: age = 80 [77–84], BMI = 27 

[25.0–29.0], AHI = 21.0 [13.0-35.0]. OSA severity was defined based on AHI as: 

Mild (5 ≤ AHI < 15), Moderate (15 ≤ AHI < 30) and Severe (AHI >= 30).
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factors influencing sleep disordered breathing in an aging cohort 

studied over 6.5 years. Finally, we showed that differences in body 

position and state modestly influence the measured traits; yet ef-

fects of position and state on AHI was typically greater. Such an 

understanding is needed to appropriately interpret trait estimates 

and understand sources of bias for any future application in re-

search and therapeutic decision-making.

Within-night repeatability

Prior to the current study, little was known about the repeat-

ability and consistency of the polysomnographic endotypic 

traits. Our original paper described the within subject average 

standard error of the loop gain metric as 6 ± 2% [5]. Available 

data from supplemental oxygen therapy studies [12] also sug-

gested that arousal threshold, collapsibility, and compensation 

Figure 1.  Examples illustrating within-night repeatability of endotypic traits (Ventilation-versus-ventilatory drive) and apnea-hypopnea index in 9 MESA participants. 

Two independent estimates are provided for each individual: Odd periods in red (40% of the night) are shown superimposed over even periods in blue (40% of the night). 

Note that, visually, plots are similar within individuals, but large differences across individuals are apparent. Accompanying values for apnea-hypopnea index (AHI), 

loop gain (LG1) and ventilatory instability (LGn) are also shown for odd and even periods (red and blue respectively). Values for Vpassive (purple dots, lower values indi-

cate lower ventilation i.e. greater collapsibility), compensation (the increase in ventilation achieved when ventilatory drive rises to the arousal threshold), and arousal 

threshold (green vertical lines) are shown graphically. Arousal threshold and Vpassive values shown here are not transformed.
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were repeatable within subjects across separate nights before 

and after supplemental oxygen therapy (1-week apart)—an 

intervention that has no known effects on these traits [30]. 

Repeatability across nights for loop gain is also evident from 

the plots provided in a study exploring the effects of donepezil 

on AHI [31], but did not provide a quantitative analysis. Recent 

preliminary data from Tolbert et al [32] (N  =  44) also supports 

short term night-to-night repeatability of the traits (R values: 

collapsibility 0.81, compensation 0.71, loop gain 0.90, arousal 

threshold 0.92) which compared well with repeatability for AHI 

(R = 0.87). In the current study, within-night repeatability in pa-

tients with sufficient windows also supported adequate repeat-

ability (collapsibility 0.83, compensation 0.69, loop gain 0.79, 

arousal threshold 0.82). In our analysis, collapsibility, loop gain, 

and arousal threshold all had similar repeatability (R ~ 0.8), with 

somewhat lower repeatability for compensation (R~0.7). Of note, 

the lower repeatability for compensation was also observed by 

Tolbert et al.

Within-night assessments also allowed us to compare 

measurement error associated with endotypic traits to the AHI. 

Since the derivation of endotypes depends on scored annota-

tions (respiratory events, arousals, stages) it is not surprising 

that there is a greater measurement error for the endotypes 

than with events based on single annotations (apnea occur-

rence) or two annotations (hypopneas, also using associated 

arousals). However, overall measurement error was estimated 

to be modest, particularly when restricting the analysis to 

those meeting criteria for the minimal numbers of windows. 

These findings suggest that endotypes can serve as reason-

able proxies for important physiological traits, although care 

should be taken to ensure sufficient data are available for op-

timal reliability.

Long-term consistency

The current study is also the first to assess long-term con-

sistency of endotypic trait characteristic of OSA. Notably, the 

long-term consistency of the traits was comparable to the 

long-term consistency of AHI, despite our concerns about  

the potential amplifying effect on measurement error associ-

ated with multiple manually annotated components used in 

the derivation of endotypes. This may reflect the greater specifi-

city of endotypes to reflect physiological processes that change 

less over time (and are calculated by inter-relationships among 

multiple physiological features) than the cruder AHI, which 

does not provide information on trait-like processes influencing 

OSA pathogenesis. Of all endotypes, loop gain measurements 

are the most consistent when measured across the years 

(R = 0.57–0.63) and was found to be more consistent than AHI 

(R = 0.47–0.52) yet measures of upper airway physiology were 

not as consistent (0.30–0.41). Accounting for body position and 

sleep state improved the consistency measures, particularly for 

collapsibility, but did not bring its long-term consistency up to 

that of loop gain. Furthermore, investigation is needed to deter-

mine whether long-term consistency for the upper airway traits 

may be higher in younger individuals or might be improved 

with advances in the techniques for estimating these traits or 

with improvements in raw signal quality used for estimating 

ventilation.

Quantitative interpretation of coefficient of 
repeatability results

One way to interpret repeatability and consistency based on the 

coefficient of repeatability (CR) begins with considering that 95% 

Table 2. Within-night repeatability in MESA (measurement error)

 

Trait  

averages  

(Mean ± SD) 

 “Odd”  

Estimate  

(Mean ± SD) 

“Even”  

Estimate  

(Mean ± SD) 

N windows** 

(Mean ± SD) 

Coefficient  

of 

repeatability 

Correlation 

(R) 

Repeatability 

model  

β 
Nwindows

 ± SE***  

 

Recommended  

N windows**  

(% subjects 

exceeding 

criterion) 

Coefficient of 

Repeatability 

for Subjects 

with 

Recommended 

N Windows 

Correlation 

(R) for 

Subjects with 

Recommended 

N Windows 

Total N 

Windows** 

(Mean ± SD) 

Endotypes

  Collapsibility 

(Vpassive, %)*

75.9 ± 13.0 75.6 ± 13.8 75.0 ± 14.3 53 ± 21 win 17.7 0.79 0.07 ± 0.005 28 win (98.1%) 15.4 0.83 131 ± 53 win

  Compensa-

tion (%)

4.9 ± 17.4 4.9 ± 18.1 5.2 ± 17.6 53 ± 21 win 30.3 0.62 0.06 ± 0.01 35 win (96.7) 29.0 0.69 131 ± 53 win

  Loop gain, LG
1

0.52 ± 0.15 0.52 ± 0.16 0.52 ± 0.16 39 ± 17 win 0.26 0.68 0.06 ± 0.004 34 win (94.1) 0.20 0.79 97 ± 42 win

  Ventilatory in-

stability, LGn

0.42 ± 0.10 0.42 ± 0.10 0.42 ± 0.10 39 ± 17 win 0.16 0.67 0.07 ± 0.003 30 win (95.5) 0.13 0.77 97 ± 42 win

  Arousal 

threshold (%)*

144.4 ± 21.9 144.1 ± 24.0 144.7 ± 23.6 31 ± 14 win 33.7 0.74 0.1 ± 0.01 20 win (97.4) 27.6 0.82 77 ± 35 win

Apnea-hypopnea 

index 

(events/h)

27.6 ± 0 27.7 ± 19.4 27.7 ± 19.4 180 ± 40 min 14.9 0.92 0.04 ± 0.002 45 min (99.9%) 14.9 0.92 359 ± 81 min

Odd and even estimates were obtained for endotypic traits and apnea-hypopnea index by dividing the sleep study into 30-min periods; “odd” and “even” numbered periods were aggregated to yield two independent meas-

ures per individual. 

*Denotes transformed values (for Vpassive and Arousal Threshold, see Methods). 

**For endotypic traits, the average number of 7-min windows (“N Windows”) for analysis of odd periods and for even periods is shown (i.e. 39 “odd” windows and 39 “even” windows were typically available for loop gain 

measurements); for apnea-hypopnea index, total sleep time analyzed is reported. Coefficient of Repeatability is also shown as an estimate of the upper 95% confidence limit for absolute error. Correlation indicates the pair 

wise linear correlation coefficient between each pair of odd and even window traits using Pearson correlation method. 

***Associations between measurement error (test-retest “error”) and the number of windows used for analysis were significant for each trait (p < 10-4). Test-retest repeatability was modeled (right hand side, “Repeatability 

Model”) to examine dependence on N windows. Error was defined by the mean squared difference between Even Estimate and model-predicted Even Estimate (from Odd Estimate, regression analysis), normalized by total 

mean squares (Even Estimate minus mean of Even Estimate; estimate of trait variance). Thus, the mean value of Error across subjects equals 1-R2, thus repeatability R = [1-mean(Error)]0.5. Error was modeled using a hyper-

bolic link function, whereby error falls with increasing N windows. Model results provided an estimate for the number of windows recommended as required for a repeatable estimate (based on R = 0.7 threshold). Using 

R = 0.7 threshold, we recalculated coefficient of repeatability and correlation coefficients based on pairs of odd and even windows where the recommended number of windows were available for both measurements. Total 

N windows denote the actual number of windows available for the whole night (odd, plus even, plus overlap periods). Sample size for this analysis was N = 1750.
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of the population spread of a variable lies across 4SD (i.e. ± 2SD). 

For example, for loop gain (LG
1
), which has a population SD of 

0.15 in MESA, 95% of the samples lie within 0.22–0.82 (±2 SD); 

nominal “low” and “high” values are 0.37 (−1SD) and 0.67 (+1SD) 

respectively. Within-night repeatability per CR was 0.2, which in-

dicates that a single measurement in an individual with a “high” 

loop gain value (0.67) should yield repeat within-night measure-

ments above the low loop gain level (0.37) > 95% of the time. This 

was true for each of the traits (i.e. CR < 2SD of the population 

spread). Thus, an individual with a high measured value will only 

rarely exhibit a low measured value upon repeated within-night 

assessment.

Across multiple years (MrOS), however, the CR results for 

long-term consistency illustrated greater ambiguity. For ex-

ample, the CR for collapsibility rose from 15% within-night to 

32% across years, thus a “high” collapsibility measure (60.8%, 

−1SD for visit 1) would not be above the low collapsibility value 

(83.8 %, +1SD) more than 95% of the time with a future measure-

ment; likewise, CR for compensation and arousal threshold ex-

ceeded 2SD of the population. On the other hand, the long-term 

consistency for loop gain still permitted discrimination between 

a higher measured value and lower level threshold (CR < 2SD 

of the population) with 95% confidence. On an optimistic note, 

however, we emphasize that for all of the traits CR was below 

3SD of the population, i.e. a high measured value for each of the 

traits would still exceed the lower threshold value more than 

87% of the time.

Longitudinal change in endotypes

In the assessment of long-term consistency, we also iden-

tified systematic differences in the traits over the 6.5-year 

time frame: with aging, compensation increased, and arousal 

threshold declined, whereas AHI increased. Although an in-

crease in compensation was unexpected based on a prior 

cross-sectional physiology study (reduced genioglossus sensi-

tivity to negative pressures during wakefulness [33]), we note 

that there have been reports in older patients of a pattern of 

breathing characterized by crescendo-decrescendo periodic 

obstruction that is consistent with high compensation (flow 

rises when drive rises) [34]. Likewise, available data have also 

suggested that increased muscle responsiveness could be an 

acquired trait to protect against pharyngeal obstruction [35]. 

Effects of age on the arousal threshold are more consistent 

with expectations, given that older individuals have more fre-

quent arousals and lighter sleep than younger individuals [36]. 

It is plausible that the lower arousal threshold contributes to 

increased OSA severity with aging among older men. A longer 

duration follow-up time may be needed to detect changes in 

collapsibility and loop gain.

Dependence on body position and sleep state

The current study also assessed the extent to which changes in 

body position and sleep state influence endotypic trait estimates. 

Figure 2. Illustration of within-night repeatability of endotypic traits and apnea-hypopnea index in MESA participants with OSA (per AHI>5, N = 1750). Top panels il-

lustrate the concordance between two independent measures of the endotypic traits (odd on x-axis, even on y-axis); apnea-hypopnea index is also shown to provide a 

benchmark for comparison. Orange dots represent participants who did not have sufficient windows or total sleep time to obtain a reliable estimate (see Table 2); black 

dots represents participants who had sufficient windows to providing a reliable estimate. Blue lines denote the line of unity and red lines denote limits of agreement 

(shown for participants with sufficient windows). Middle panels illustrate the difference (even minus odd) versus the mean (Bland-Altman plot). Bottom panels illus-

trate the amount of data that is typically available across the whole night (total number of windows or TST across the MESA OSA participants). Black (orange) shading 

represents the participants with sufficient (insufficient) windows across the night to provide reliable (unreliable) estimates. Vpassive and arousal threshold data are 

square root transformed as described in the Methods.
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Previous physiological studies indicate that supine position af-

fects collapsibility [37], but has minimal effect on the other traits. 

REM sleep has a profound effect on lowering loop gain [38, 39]. 

Whereas REM also increases collapsibility via a reduction in 

muscle activity, there is also a well-described loss of ventilatory 

drive to both pump and upper airway muscles during REM sleep 

[40]; however, compensation was preserved. The arousal threshold 

is also reduced in REM [40]. Based on gold standard physiological 

signals, the greatest effect of deeper non-REM sleep appears to 

be a higher arousal threshold [41]; reduced collapsibility has also 

Figure 3. Long-term consistency of endotypic traits in MrOS; consistency of the apnea-hypopnea index (AHI) is shown for comparison. Top panels illustrate the second 

time point plotted against the first time point. Orange dots represent participants who did not have sufficient windows or total sleep time to obtain a reliable estimate; 

black dots represents participants who had sufficient windows to providing a reliable estimate (and provided data for Table 3 analysis). Gray lines denote the line of 

unity, blue lines denote mean bias, and red lines denote limits of agreement. Bottom panels are Bland-Altman plots. Note the substantial variability from one time 

point to the next in both the traits and AHI. Although variability over time is considered a combination of authentic physiological variability and measurement noise, 

we note that measurement noise was minimized since we only analyzed participants who had sufficient number of windows to provide reliable trait estimates using 

R = 0.7 criteria. Vpassive and arousal threshold data are square root transformed as described in the Methods. *denotes p < 0.025.

Table 3. Long-term consistency in MrOS

 

Visit 1  

(Mean±SD) 

Visit 2  

(Mean±SD) 

Difference  

(Mean [95%  

confidence interval]) 

Limits of 

agreement 

Coefficient  

of 

repeatability 

Correlation 

R 

Adjusted correlation R

+∆Lateral +∆REM +∆N1,∆N3 

Endotypes

 Collapsibility 

(Vpassive,%)

72.3 ± 11.5 72.6 ± 15.8 0.2 [−2.5,0.4] [32.16, −31.51] 31.8 0.30 0.35 0.38 0.41

 Compensa-

tion(%)

4.1 ± 22.3 6.6 ± 23.1 2.5 [0.3,4.6]* [54.11, −49.15] 51.8 0.33 0.33 0.33 0.36

 Loop gain, LG
1

0.57 ± 0.14 0.56 ± 0.14 −0.004 [−0.016,0.007] [0.26, −0.27] 0.26 0.57 0.57 0.63 0.63

 Ventilatory 

instability, LGn

0.48 ± 0.10 0.49 ± 0.12 0.006 −0.002,0.014] [0.19, −0.18] 0.19 0.61 0.61 0.62 0.63

 Arousal 

threshold (%)

152.7 ± 22.8 148.2 ± 25.6 −4.5 [−6.8, −2.2]* [48.84, −57.91] 54.1 0.37 0.43 0.43 0.43

Apnea-

hypopnea 

index 

(events/h)

18.0 ± 13.0 22.1 ± 15.5 4.1[2.9,5.2]* [33.03, −24.91] 30.0 0.47 0.49 0.51 0.52

Traits differences, limits of agreement, coefficient of repeatability and correlation coefficients were based on comparison of Visit 2 versus Visit 1 (using All Sleep i.e. 

pooled nREM and REM measures). Crude across-visit correlations are shown (left hand side) and are interpreted as longitudinal consistency; R values were all signifi-

cant to p < 1 × 10−13. Correlations were then repeated after adjusting for between-study changes in (1) body position (∆Lateral), then additionally (2) REM sleep (∆REM), 

finally also (3) nREM stages N1 and N3 (∆N1,∆N3; all expressed as fraction of sleep time). Specifically the difference between traits at visit 1 and visit 2 were modeled 

as a function of differences in position and state; the predicted difference was then added to trait 1 values to provide a position and state-corrected trait 1 value for 

comparison with trait 2 values. Most notably, long-term consistency improved for collapsibility and arousal threshold when accounting for changes in body position, 

and improved for loop gain when accounting for changes in REM sleep. Bold denotes a potentially meaningful increase in R (≥ 0.03) after accounting for across-year 

differences in position/state (for each bold case highlighted, associations between the across-year change in trait and changes in position/state were significant per 

p < 0.01). Sample size for this analysis was N = 595. *denotes p<0.025.
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been described [42]. In the current study, we specifically examined 

the effects of body position and state on the estimates of the OSA 

traits: as expected, position and state differences affected mul-

tiple endotypic trait measurements. In general, effects on traits 

were smaller than for AHI, with two exceptions: we observed a 

strong effect of N3 on collapsibility, and a strong effect of REM on 

loop gain (which supports the previous focus on endotypes calcu-

lated only within non-REM [5–8, 10, 13, 31, 43]). Unexpectedly we 

observed a reduction in compensation and loop gain with greater 

proportion of stage 1 sleep, the physiological underpinnings of 

which are unclear. We also observed that the currently described 

analysis did not detect the known effects of deeper sleep on the 

arousal threshold. This could be secondary to our noninvasive es-

timate of ventilatory drive being relative and may not recognize 

the known steady-state rise in drive seen with deeper sleep. The 

same concept may explain the increase in arousal threshold ob-

served in REM (which is contrary to the known physiological dir-

ection of effects). Advances in the methods to capture absolute 

levels of ventilatory drive (rather than estimating local changes 

in drive) may improve the ability of the method to detect these 

known physiological changes.

Clinical and research implications

Endotypic traits have been proposed for use in selecting patients 

that might benefit preferentially from a range of non-CPAP al-

ternative therapies including oral appliances, hypoglossal nerve 

stimulation, supplemental oxygen, and pharmacotherapy. Our 

data support the potential utility of these measurements for 

physiologically directed therapeutic intervention. However, ap-

propriate use of these data requires an understanding of the 

limitations, and particularly the need to obtain sufficient data 

to derive reliable estimates and consider influences of position 

and sleep states.

Our findings also support the use of estimated endotypes 

in large-scale epidemiological studies that aim to characterize 

OSA physiological subtypes- something not possible by simply 

using the AHI. For example, we recently described differences in 

arousal threshold, collapsibility, and loop gain in men compared 

to women [43], which underscored the need to consider sex/

gender as important factors influencing OSA pathogenesis. 

Given that polysomnography is available in several population 

studies, endotypes can be derived to further understand the 

impact of differences in OSA subtypes in disease outcomes as 

well as in efforts to identify genetic markers of susceptibility 

(adjusting for age and sex variation). The modest within-night 

measurement error and long-term consistency for the panel of 

endotypes suggest that these measures provide fairly reliable 

trait estimation, with long-term reliability similar to that of 

many other complex disorders shown to have a strong genetic 

basis and have prognostic value [44, 45].

Limitations

The current study has several limitations. First, repeatability was 

assessed within a single night using odd and even windows to 

provide fully independent measures; this analysis provides an 

upper limit of repeatability for a half-night measurement. Across 

nights, physiological changes may be greater, although prelim-

inary data from Tolbert et al using in-laboratory assessments in a 

small sample showed similar or slightly greater reliability across 

nights than our larger sample studied at home [32]. Second, the 

endotypic traits calculated are estimates and depend on several 

validated assumptions: (1) changes in the (linearized) nasal pres-

sure signal amplitude reflect the changes in inspired ventilation, 

(2) the mean ventilation during sleep approximates the eupneic 

level, (3) the airway is largely patent following respiratory events, 

and (4) ventilatory drive fluctuations can be estimated meaning-

fully using airflow measurement and a delayed feedback model 

[46]. Importantly, a nasal cannula yields near identical traits 

compared with gold standard pneumotachography with sealed 

full-face mask (R > 0.95 for all traits simultaneously recorded) 

[6]. Direct measurement of ventilatory drive would require add-

itional, potentially invasive signals that are not part of routine 

polysomnography, and thus would prevent widespread use for 

precision sleep medicine. Third, our long-term consistency ana-

lysis was based on 6.5-year follow-up data from a cohort of older 

individuals—a group in whom co-morbidities are common and 

Table 4. Effect of body position and sleep states on endotypic traits (MESA and MrOS sleep visit 1)

 β±SE (%
SD

/%
time

)

F
Lateral

 F
REM

 F
N1

 F
N3

 

Endotypes

 Collapsibility (Vpassive,%) 0.45 ± 0.01 −0.36 ± 0.01 −0.78 ± 0.03 1.02 ± 0.02

 Compensation(%) 0.37 ± 0.02 −0.15 ± 0.02 −0.79 ± 0.05 0.04 ± 0.04ǂ

 Loop gain, LG
1

−0.28 ± 0.02 −1.75 ± 0.02 −0.70 ± 0.05 −0.06 ± 0.04ǂ

 Ventilatory instability, LGn −0.04 ± 0.02ǂ −0.89 ± 0.02 −0.80 ± 0.06 0.09 ± 0.05ǂ

 Arousal threshold (%) −0.86 ± 0.02 0.91 ± 0.02 −0.06 ± 0.05ǂ −0.44 ± 0.04

Apnea-hypopnea index (events/h) −1.00 ± 0.02 0.91 ± 0.02 1.54 ± 0.02 −0.95 ± 0.02

Within subject effects of differences in sleep time spent in different body positions (F
Lateral

), non-REM sleep (F
N1

, F
N3

) and REM sleep (F
REM

) on endotypic traits were as-

sessed by using bootstrapping randomly sampled windows of data from each participant to generate 50 measurements per participant. Model equation: Trait ~ F
Lateral

 

+ F
REM

 + F
N1

 + F
N3

 + Subject. AHI was also included to provide a benchmark. F
Lateral

, F
N1

, F
N3

, F
REM

 are expressed as fraction of total sleep time. Data from MESA (N = 1774) 

and MrOS (N = 2390, visit 1) were combined for this analysis. Beta coefficients and SE (β±SE (%
SD

/%
time

) shown describe the effect on each trait estimate (in percentage 

of a SD) per 1% increase in sleep time in the specified position or state. For example, an increase in REM (F
REM

) of 1% of the night is associated with a 0.0175 SD re-

duction in the estimated loop gain (i.e. reduction in loop gain by 0.0026). Intersubject SD for the above analyses were: Vpassive* = 14.2, Compensation = 20.9, Loop 

gain = 0.151, Ventilatory Instability = 0.106, Arousal Threshold* = 23.9 (*denotes transformed). AHI was square root transformed prior to analysis; SD for transformed 

AHI = 1.55, SD for untransformed AHI = 17.2 events/h. Shading denotes meaningful effects based on β > 0.5 %
SD

/%
time

. Bold indicates an effect that is greater than that 

observed for AHI. All effects are significant except those denoted by ǂ where p ≥ 0.05.
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may promote heterogeneity in OSA pathophysiology over time. 

Hence care must be taken although applying these long-term 

consistency values to younger individuals. It is also possible that 

a shorter follow-up time may have improved consistency meas-

ures; our study was not able to directly address this question since 

the follow-up range was narrow (range: 4.79–7.95 years). Available 

evidence, albeit limited, currently leads us to contend that there 

is greater night-to-night consistency when the duration between 

measurements is shorter. Fourth, our study was a community-

based sample of men; thus, care should be taken extrapolating our 

results to women or a clinical sample. Fifth, in this study traits were 

measured using in-home polysomnography rather than a more 

controlled in-laboratory PSG environment, which may adversely 

affect repeatability and consistency. Sixth, our main analysis de-

scribed repeatability and consistency of traits as continuous vari-

ables, but future application may include separating participants 

into endotype-based subgroups (i.e. low vs. high [2 classes], or low, 

medium, and high [3 classes]); additional analysis (Supplemental 

Table S3) showed that 2-class repeatability/consistency for traits 

was 70%–79% within-night and 59%–72% across 6.5 years. 3-class 

repeatability/consistency for traits was 58-64% exact (92-97% 

within 1 class) within-night and 44%–56% (84%–93% within 1 class) 

across 6.5 years. We note that it was relatively uncommon for indi-

viduals to jump between low and high classes in 3-class analysis.

Conclusions

Noninvasive estimation of endotypic traits from standard PSG 

may help predict individual responses to OSA therapy in clin-

ical settings, and phenotype individuals in research studies. 

The utility of these endotypic traits depend on the magnitude 

and sources of measurement error. This study has shown that 

in a large community-based research population with mild-to-

severe OSA, repeatable endotypic traits can be estimated from 

a single night in-home PSG recording, and the consistency of 

these measurements across years are comparable with that of 

AHI. We also demonstrated generally modest influences of body 

position and sleep states, which, once accounted for, appeared 

to improve the consistency of the trait calculation, and should be 

considered during the interpretation of endotypic traits. Given 

the large numbers of routinely collected PSG for clinical and re-

search purposes, these results support the value of generating 

these metrics to advance knowledge and use of OSA subtypes.

Supplementary Material

Supplementary material is available at SLEEP online.
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