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Patients with obstructive sleep apnea (OSA) are at increased risk 

for morbidity and mortality from cardiovascular disease (CAD), 

including myocardial infarction and sudden cardiac death [1, 2]. 

In observational studies, investigators have found that the risk 

for these cardiovascular events is reversed by continuous posi-

tive airway pressure [2]. Animal models of OSA provide further 

evidence that OSA plays a critical role in the pathogenesis of 

CAD. Chronic exposure to intermittent hypoxia (IH), a hallmark 

feature of OSA, induced atherosclerosis in C57BL6/J mice who 

were resistant to disease in the absence of IH [3]. IH also accel-

erated atherosclerosis in apolipoprotein E-deficient (ApoE−/−) 

mice [4], which are atherosclerosis-prone. Interestingly, in 

atherosclerosis-naïve mice, IH-induced fatty streaks, repre-

sented early-stage lesions. In ApoE−/− mice, on the other hand, 

IH induced fibrinous plaques, which cannot be easily reversed. 

These experimental findings pose the question of whether 

therapeutic intervention in OSA should target cardiovascular 

disease at early stages to be effective.

Vascular endothelium dysfunction precedes gross vas-

cular morphological changes and clinical manifestations of 

atherosclerosis [5]. Impaired endothelial and endothelium-

independent coronary vasoreactivity are associated with an 

increased incidence of cardiovascular events [6]. Moreover, the 

association between vasoreactivity and cardiovascular risk was 

strongest in lower-risk populations, suggesting that endothe-

lial function may play an important role early in the course of 

CAD pathogenesis [5]. Since patients with OSA have evidence 

of endothelial dysfunction [7], improving endothelial function 

is an attractive target to prevent the onset of clinical athero-

sclerosis and its complications. Timing of intervention may be 

critical to altering disease course. Animal models enable inves-

tigators to intervene at specific time points.

Badran et al. [8] examined left anterior descending coronary 

artery vascular reactivity in mice exposed to IH compared to 

room air for 2, 6, 16, and 28 weeks. The authors measured endo-

thelial function by inducing muscle relaxation and vasodila-

tion in response to acetylcholine as well as blood velocity at the 

baseline and hyperemic conditions. They found that coronary 

artery relaxation was not impaired after 2 weeks of IH. The first 

evidence of vascular dysfunction was detected after 6 weeks of 

IH and further worsened and plateaued after 16 weeks. After 6 

weeks of IH, coronary blood velocity in the hyperemic condition 

fell, in which did not occur at the baseline condition, indicating 

that IH adversely affected coronary artery vasodilation. To de-

termine whether treatment of sleep apnea could reverse im-

pairments in coronary vascular reactivity, the authors also 

conducted these measurements after 6 weeks of IH followed 

by recovery under room air. The author reported a complete re-

versal of coronary blood velocity abnormalities after recovery. 

Taken together, these findings suggest that IH causes impair-

ments in vascular reactivity, and that these impairments are 

reversible early in the course of the disease. Moreover, Badran 

et al. [8] are the first to describe the pathological effects of IH 

on the coronary arteries in a mouse model, an important innov-

ation that is relevant to human coronary artery disease, and dis-

tinguishes the present study from previous investigations.

The study by Badran et al. has several notable limitations. First, 

C57BL/J6 are relatively protected against atherosclerosis and even 

prolonged severe exposures produced only early lesions [3]. In 

atherosclerosis-prone models, the window for intervention may 

be markedly narrowed if present at all. Thus, the relevance for 

human OSA-associated CAD remains uncertain and could be clari-

fied with similar experiments in atherosclerosis-prone models. 

Second, the mechanisms by which IH reduces vascular reactivity 
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at the differing time points are not known. Third, reversibility was 

demonstrated only after 6 weeks. As a result, it remains unknown 

whether reductions in coronary vascular reactivity become fixed 

after longer exposures. In fact, prolonged exposure to IH indices 

vascular inflammation with corresponding epigenetic changes, 

which were not reversed with the cessation of the exposure [9]. 

Fourth, the authors measure blood velocity rather than a flow, 

which may be a more biologically meaningful outcome. For in-

stance, increases in baseline blood velocity after 28 weeks of IH 

may reflect arterial narrowing and paradoxical reductions in flow. 

Fifth, the experiments were conducted only in male mice. Given 

marked sex differences in susceptibility to OSA and its complica-

tions, studies in females are of importance.

It is important to note that IH-induced vascular dysfunction 

was first observed after 6 weeks of exposure. A crude comparison 

of murine and human lifetime (2 years vs. 80 years life expectancy) 

suggests that 4–5 years may lead to significant to coronary vascular 

dysfunction. This dysfunction may be reversible at this time point, 

before the development of fixed atherosclerotic lesions.

The findings by Badran et al. [8] provide new context for recent 

randomized controlled trials of CPAP treatment in patients with 

CAD. In these studies, SAVE [10], RICCADSA [11], and ISAAC [12], 

CPAP therapy did not confer significant cardiovascular benefits in 

patients with existing CAD. Negative outcomes in these studies 

have been attributed in part to low CPAP adherence and insuf-

ficient duration of follow-up. An important perspective from the 

study by Badran et al. is that intervention may be introduced too 

late in the time course of OSA and CAD. An important question 

raised by these studies is whether intervention with CPAP in prior 

clinical trials is just too little, or also too late?
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