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Abstract
Study Objectives: Kleine–Levin syndrome (KLS) is characterized by relapsing–remitting episodes of hypersomnia, cognitive impairment, and behavioral disturbances. 

We quantified cerebrospinal fluid (CSF) and serum proteins in KLS cases and controls.

Methods: SomaScan was used to profile 1133 CSF proteins in 30 KLS cases and 134 controls, while 1109 serum proteins were profiled in serum from 26 cases and 65 

controls. CSF and serum proteins were both measured in seven cases. Univariate and multivariate analyses were used to find differentially expressed proteins (DEPs). 

Pathway and tissue enrichment analyses (TEAs) were performed on DEPs.

Results: Univariate analyses found 28 and 141 proteins differentially expressed in CSF and serum, respectively (false discovery rate <0.1%). Upregulated CSF proteins 

included IL-34, IL-27, TGF-b, IGF-1, and osteonectin, while DKK4 and vWF were downregulated. Pathway analyses revealed microglial alterations and disrupted 

blood–brain barrier permeability. Serum profiles show upregulation of Src-family kinases (SFKs), proteins implicated in cellular growth, motility, and activation. TEA 

analysis of up- and downregulated proteins revealed changes in brain proteins (p < 6 × 10−5), notably from the pons, medulla, and midbrain. A multivariate machine-

learning classifier performed robustly, achieving a receiver operating curve area under the curve of 0.90 (95% confidence interval [CI] = 0.78–1.0, p = 0.0006) in CSF and 

1.0 (95% CI = 1.0–1.0, p = 0.0002) in serum in validation cohorts, with some commonality across tissues, as the model trained on serum sample also discriminated CSF 

samples of controls versus KLS cases.

Conclusions: Our study identifies proteomic KLS biomarkers with diagnostic potential and provides insight into biological mechanisms that will guide future 

research in KLS.
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Statement of Significance

Kleine–Levin syndrome (KLS) is a rare sleep disorder characterized by relapsing/remitting episodes of hypersomnia accompanied by de-

realization and cognitive impairments. The pathophysiology is unknown and biomarker studies are limited. We used a high-throughput 

proteomic approach to profile cerebrospinal fluid (CSF) and serum proteins in KLS cases and controls. We observed 28 and 141 proteins 

as differentially expressed in CSF and serum, respectively, and predominantly CSF proteins in the microglial axis to be dysregulated. 

A machine-learning classifier built on the CSF and serum proteins accurately classified KLS cases. Our study identifies dysregulated prote-

omic signatures in KLS with diagnostic potential.
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Introduction

Kleine–Levin syndrome (KLS) was first identified as a unique 

disease entity almost a century ago [1, 2]. It is characterized 

by unpredictable episodes (median length ~10 days) of intense 

hypersomnia (≥16  h of sleep per day), occasionally associated 

with megaphagia and disinhibited behaviors, affecting prefer-

entially male (66%) teenagers. More recent descriptions of large 

case series have shown a stereotypic appearance of abrupt 

episodes with severe hypersomnia and cognitive disturbances 

(confusion, apathy, derealization, and occasionally disinhibited 

behavior). Remarkably, there is complete reversibility of symp-

toms between episodes, partial amnesia of episodes, and a gen-

erally favorable evolution with spontaneous disappearance of 

episodes after one to two decades [3–6]. Lithium has been shown 

to lessen episodes in many cases, although association with de-

pression, whether in the proband or family members, is rare [4, 

7]. Episodes may be associated with flu-like symptoms at the 

onset, with seasonal winter occurrence suggested by some in-

vestigators [8].

Several hypotheses have been proposed to explain KLS. One 

hypothesis, based on the observation that KLS onset or the be-

ginning of subsequent episodes is often associated with flu-like 

symptoms, has been an infectious or autoimmune etiology. An 

HLA-DQ2 association [9] in a small case series was reported 

but not substantiated in larger cohorts [3]. In 2008, the study 

of 108 new patients with matched controls revealed no asso-

ciation with depression or a family history of depression, but a 

strong association with a history of birth difficulties, as defined 

in prior publications that have looked at increased birth diffi-

culties in schizophrenia [10, 11]. Most recently, we completed a 

large Genome Wide Association Study (GWAS) of 844 KLS cases 

collected over a 20-year period that revealed a GWAS significant 

signal in the TRANK-1 region (odds ratio [OR] = 1.4) [12] iden-

tical to one reported in bipolar disorder (where it is the highest 

association, with OR = 1.09) [13] or in schizophrenia (OR = 1.06) 

[14]. Interestingly, the TRANK-1 association in KLS was stronger 

in cases reporting a history of birth difficulties and was year of 

birth dependent, suggesting a possible interaction between birth 

difficulties and this genetic locus [12]. Another nonexclusive hy-

pothesis may involve placental effects of TRANK-1 that could 

cause both birth difficulties and the phenotype, as suggested for 

schizophrenia [15].

Studies have confirmed that KLS subjects undergo changes 

in brain activity during episodes. For instance, EEG studies have 

revealed occasional nonspecific EEG slowing during episodes [4]. 

Functional imaging SPECT studies in KLS cases have shown a 

persistent hypoperfusion within thalamus, hypothalamus and 

associative cortical areas [16]. More recently, functional imaging 

studies in 138 KLS cases revealed a generalized hypometabolism 

in the hippocampus and the posterior associative cortex [17]. 

Sleep studies in KLS cases indicate a decreased sleep efficiency 

with frequent arousals and abnormal sleep stages [18], and mul-

tiple sleep latency test studies, while inconclusive, indicate a 

narcolepsy-like pattern in some patients [6, 19].

Although episodes are dramatic in appearance and patients 

incapacitated, biomarker studies have been limited in scope due 

to small sample size and differing techniques. Cerebrospinal 

fluid (CSF) hypocretin-1 levels in KLS have consistently been ob-

served to be decreased during episodes [20, 21] but is unlikely 

to be a specific biomarker. Indeed, hypocretin/orexin is known 

to reversibly decrease in the CSF of patients with impaired con-

sciousness or central nervous system (CNS) inflammation [22]. 

Serum cytokine levels are largely unremarkable when com-

paring in versus between KLS episodes, although a nominal in-

crease in serum VCAM1 levels has been reported compared to 

controls [23]. Thus, efforts in KLS biomarker domain have been 

at best limited.

Interrogation of serum or CSF proteome in KLS with advanced 

state-of-the-art high-throughput methods based either on im-

proved mass spectrometry technology, DNA-bar coded antibody 

assays, or aptamer-based technology could lead to advances 

in the understanding of the biology driving disease processes 

in KLS. These technologies are powerful, as the large number 

of analytes measured allows multivariate analyses that better 

correlate with complex biological processes in comparison to 

single marker measurements. Examples include better meas-

urements of glomerular filtration [24], ischemic heart disease 

[25], sleep apnea [26], paraneoplastic syndromes [27], or disease 

processes such as Alzheimer’s disease [28]. In addition, cis gen-

etic correlations of protein levels paralleling known expression 

Quantitative Trait Loci (eQTLs) are often observed, indirectly 

validating these protein measurements [29–31].

In this study, we used the SomaScan proteomic assay in CSF 

and serum samples to discover novel molecular metrics to ad-

vance our understanding of KLS and its underlying biological 

mechanism. Our first goal was to look for serum and CSF pro-

teins that could distinguish this disease and to explore if these 

could map to specific pathways or brain regions. This was done 

in two datasets: CSF samples for 30 KLS cases and 134 controls, 

and serum samples for 26 cases and 65 controls. Additionally, to 

validate our findings, the two datasets were used to develop a 

machine-learning classifier able to discriminate KLS from either 

a CSF or serum sample. Both approaches were validated with in-

dependent held-out sets of CSF and serum samples.

Methods

SomaScan assays

Relative expression levels of CSF and serum proteins were as-

sayed using SomaScan (SomaLogic Inc., Boulder, CO), a highly 

multiplexed aptamer approach detailed elsewhere [32–35]. A de-

tailed description of the SomaScan technique and quality con-

trol procedures can be found in Supplementary Information. 

Briefly, the CSF SomaScan matrix used in this study consisted 

of an older panel format that assayed 615 proteins [36] and a 

newer panel of 1133 proteins, respectively, while the serum 

SomaScan matrix assayed 1109 proteins and 1315 proteins (see 

Supplementary Tables S1–S4 for a complete list of proteins in-

cluded in each assay). SomaScan assays were designed to have 

extended dynamic range from fM to mM, and measure both 

extracellular and intracellular proteins (including soluble do-

mains of membrane proteins) although predominantly pro-

teins of the secretome are being targeted. Serum (150 µl of each 

sample) was used for each assay.

Study cohorts

All patients with KLS were diagnosed based on the International 

Classification of Sleep Disorders 3rd Edition (ICSD-3) diagnostic 
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criteria [37] and demographic variables for the collected datasets 

are reported in Supplementary Table S5. Of the patients with 

KLS, 18 of 30 CSF samples and 11 of 26 serum samples were 

in-episode (i.e. in an episode of hypersomnia at the time of 

collection) and 1 CSF sample and 5 serum samples were out-

episode (i.e. at least 30 days postepisode), respectively.

The split into training versus validation cohorts was deter-

mined based on the different dilutions and array matrices run by 

Somalogic for quantifying protein expression. For CSF samples, 

the training dataset assayed on the larger CSF SomaScan matrix 

containing 1133 proteins and validation was performed on the 

smaller matrix of 615 proteins. In serum samples, an older ma-

trix of 1109 proteins was used as the training cohort and a newer 

matrix containing 1315 proteins was used for validation. From 

there, we selected control samples that had been run using the 

same matrix within each sample sent to Somalogic. The final 

cohort included CSF samples for 30 KLS cases (23 for training [14 

in-episode] and 7 [4 in-episode] for validation) and 134 controls 

(80 for training and 54 for validation). Similarly for the serum 

samples, the sample included a total of 26 cases (20 training [10 

in-episode] and 6 [1 in-episode] validation) and 65 controls (54 

training and 11 validation). In seven KLS cases, both serum and 

CSF samples were available and were used in the serum training 

cohort and in the CSF validation cohort.

Case–control matching

Because of differences in CSF and serum demographics distri-

bution between KLS and controls, matching for age, gender, and 

BMI was performed using MatchIt R package (v. 4.1.0) [38] and re-

sults analyzed both in matched and unmatched (entire cohort) 

samples. Matching and demographics of samples used are pre-

sented in Supplementary Tables S5 and S6 and Figures S1 and 

S2. Although samples were stored frozen at −80°C until assay, 

we also performed an additional analysis to study the influence 

of the time to assay from the date of sample collection on the 

expression of each protein. For all univariate analysis results, 

we conducted a separate analysis estimating the Pearson correl-

ation coefficient between the time since sample collection and 

individual protein expression across the set of samples for both 

CSF and serum, and we report these values in a separate column 

for each protein as additional information for considering the 

age of samples as having a potential confounding effect.

Univariate analysis

Raw expression values were log-2-transformed to ensure 

normal distribution. Principal component analysis (PCA) was 

used within each matrix to check for technical artifacts with 

dimensionality reduction. We plotted the two principal com-

ponents of the analysis and visualized qualitative separability. 

Nonparametric Mann–Whitney sum-rank tests were used for 

unpaired comparisons of protein levels in KLS subjects versus 

controls in the training datasets. Correction for multiple testing 

was performed using the Benjamini–Hochberg procedure. For 

each statistic, we computed both p values and associated false 

discovery rate (FDR) corrected “q values,” and log fold change 

values (logFC) using R [R Core Team (2020)] [39]. Because distri-

bution of time of sampling of KLS samples was different from 

controls, univariate associations not only corrected for this 

variable but also presented together with p values obtained with 

time since sampling for each protein. In this study, we used a 

0.1% FDR threshold to control for multiple hypothesis testing in 

the description of the univariate results.

Preprocessing for the multivariate analysis

The goal of this analysis was to build a classifier that could dis-

tinguish between KLS and controls using our first assays, with 

independent replication in a second sample. To ensure homo-

geneity in the data, we only analyzed a common set of proteins 

that were present in both training and validation panels, re-

spectively, across the two CSF and serum matrices. Because the 

effects were relatively large, cross validation/training of the pre-

dictors was also performed across CSF and serum matrices. We 

then used the limma R package (version 3.44.3) to remove batch 

effects between training and validation sets for each tissue in-

dependently. Batch correction was done simultaneously for the 

training and validation sets. The two sets were collected inde-

pendently and represent the two different batches used in the 

batch correction analysis. We performed a log-2 transformation 

for normal distribution and autoscaled the data after filtering 

for common proteins.

Lasso classifiers on CSF and serum

For multivariate analyses, a lasso model was trained independ-

ently on each dataset and validated using the corresponding 

validation dataset. This algorithm fits a classic least square 

linear regression minβ ||Y − βX||2 adding the constraint ||B||_1<λ, 

where Y is the predictor vector, X the matrix of all proteomic 

features, β the coefficients of the regression and λ the l1 regular-

ization coefficient. To fit the l1 regularization parameter, we used 

cross-validation using the glmnet package [40] (version 4.0.2) 

and caret package (version 6.0-88). The l1 regularization creates 

sparsity in the coefficients and thus operates as a feature se-

lection procedure. Model coefficients were selected, minimizing 

mean-square error of the model on the cross-validation folds. 

We then used the cross-validated models to predict the held-

out independent validation sets and predict on those sets. To 

evaluate final performances, we report results of the area under 

the receiver operator curve (AUC) for cross-validation and val-

idation sets for serum and CSF independently. CSF model per-

formance on serum matrix and vice versa were further set up to 

explore performances of models trained on CSF (discovery) and 

tested on serum (validation) and model trained on serum (dis-

covery) and then tested on CSF (validation). Finally, to further 

validate the classifier, we performed a cross-sectional analysis 

of in-episode versus out of episode KLS samples within both CSF 

and serum matrices. A comparative distribution of the scores for 

each phenotype in the validation cohort was reported.

Bootstrap analysis

To account for variability of feature selections in lasso models, 

we operated by iterative bootstraps over the discovery sets so 

that proteins with most occurrences across 1000 models were 

selected. A feature ranking with count value of coefficients over 

all bootstrapped models was calculated for interpretation pur-

poses also reporting on variance. Of note, this technique used 
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decoy artificial features that are spiked in the dataset, so that 

the selection frequency of the real features can be compared 

with artificial ones. This ensures calculation of the likelihood 

that selected features are not artifactual, i.e., selected more 

often than spiked features.

Tissue enrichment analysis

Proteins passing the 5% FDR threshold on the univariate analysis 

were used as input for this analysis. Potential enrichment tissue 

sites for each of the protein were mapped using a dataset of con-

sensus tissue expression based on the Human Protein Atlas ver-

sion 20.1 and Ensembl version 92.38 [41]. This was next used to 

select proteins from those available in the SomaScan assay that 

could be “tissue specific,” i.e. enriched at least 2-fold in at least 

one of the subset tissues compared to median expression across 

all tissues, creating a brain protein set and an immune protein 

set that could distinguish these tissues. Brain and immune 

were selected a priori based on previous knowledge regarding 

KLS pathophysiology. Brain tissue sets included amygdala, cere-

bellum, cerebral cortex, hippocampal formation, hypothalamus, 

midbrain, pons, and medulla and thalamus. Immune tissue 

sets included B cells, dendritic cells, granulocytes, monocytes, 

NK cells, and T cells. For each of these sets, the corresponding 

tissue-specific proteins that were measured using SomaScan 

were separated in three categories: (1) protein is present in the 

assay and upregulated under FDR 5% in the univariate analysis; 

(2) same but downregulated in the univariate analysis under 

FDR 5%, and (3) either up- or downregulated. Differences in the 

distribution of one category against the distribution of all pro-

teins available in the assay were computed using a chi-square 

test, with p value reported for subtissues.

Pathway analysis

Proteins differentially expressed and passing the thresholds as 

reported in Supplementary Tables S1 and S2 were used as the 

input for the pathway analysis. We used the STRING software 

(version 11.0) [42–50] to perform the pathway analysis from a 

network known protein–protein interactions. From the net-

work of differentially expressed proteins (DEPs) found in the 

univariate analysis, we report the enrichment of pathways from 

the KEGG [51–53] and Reactome [54–58] ontologies that pass a 

5% FDR. This analysis was performed independently on CSF and 

serum results.

Results

Differential expression of CSF proteins in KLS cases

Univariate analyses of CSF proteins in 23 KLS cases compared 

to CSF from 80 control individuals found 28 proteins differen-

tially expressed: 21 upregulated and 7 downregulated proteins 

(FDR 0.1%; Mann–Whitney unpaired sum-rank test; see Figure 

1, A, Supplementary Figure S3, and Table 1). Notable upregulated 

proteins include IL-34 (logFC  =  0.59), transforming growth 

factor beta-2 (TGF-b2; logFC  =  0.78), insulin-like growth factor 

1 (IGF-1; logFC  =  0.68), junctional adhesion molecule B (JAM 

B; logFC = 0.35), caspase 10 (logFC = 0.52), IL-27 (logFC = 0.17), 

and osteonectin (ON; logFC  =  0.66), all predominantly from 

the macrophage–microglial axis. Downregulated proteins in-

clude lipopolysaccharide-binding protein (LBP; logFC  =  −1.49) 

and various Dickkopf-related proteins (see Figure 1, A and 

Supplementary Table S1) including DKK4 (logFC = −1.43), DKK1 

(logFC  =  −0.64), and DKK3 (logFC  =  −0.33). These effects were 

more pronounced in KLS individuals who were in-episode 

(n = 23, 14 in-episode versus 9 out of episode or other KLS state, 

Mann–Whitney unpaired rank sum test, for all individual com-

parisons p  <  0.05). Robust matching on various demographic 

variables between cases and controls did not change the signifi-

cance of these results, and proteins’ association with the time 

of collection is reported as an additional confounder (see Table 1 

and Supplementary Table S7).

Differentially expressed serum proteins in KLS cases

Univariate analyses of serum proteins in 20 KLS cases compared 

to serum from 54 control individuals found 141 proteins differ-

entially expressed: 117 proteins were significantly upregulated 

and 24 proteins downregulated (FDR 0.1%) (Figure 1, B and 

Supplementary Figure S4). A cluster of core histone complex pro-

teins (HIST1H1C [logFC = 2.7], HIST3H2A [logFC = 3.4]), Src-family 

kinases (SFKs) including FYN (logFC = 2.5) and CSK (logFC = 2.7) 

and protein tyrosine phosphatase PTPN6 (logFC = 1.9), PTPN11 

(logFC = 1.9), and TATA-Box Binding Protein (TBP, logFC = 0.7) were 

significantly upregulated. Downregulated proteins include al-

kaline sphingomyelin phosphodiesterase (ENPP7, logFC = −1.6), 

interleukin-13 receptor subunit alpha 1 (IL13RA1, logFC = −0.8), 

Figure 1. Volcano plots presenting the univariate analysis for the KLS protein 

signature in CSF and serum assays (A) for CSF, with 23 KLS samples and 80 

controls, y-axis represents FDR and x-axis represents the log-2 fold change for 

which a positive value indicates upregulation for KLS samples and a negative 

value downregulation for KLS. Red points indicate |logFC| > 0.5 and FDR < 10−4. 

Blue points only pass FDR < 10−4. Green points only pass |logFC| > 1. Gray points 

pass neither threshold. (B) for serum, 20 KLS cases and 54 controls. Red points 

indicate |logFC| > 1 and FDR < 10−4. Blue points only pass FDR < 10−4. Green 

points only pass |logFC| > 1. Gray points pass neither threshold.
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and interleukin-1 soluble receptor type I  (IL1R1, logFC  =  −0.9) 

(Table 2 and full list in Supplementary Table S8).

Increased cytokine expression in KLS cases in CSF 
and serum

In the KLS CSF and serum samples (both and in-episode and 

other KLS cases combined), interleukins known to be secreted 

by macrophages were differentially expressed from controls 

samples: IL-8 (p
CSF

 = 0.0006; p
Serum

 = 0.0005) and IL-6 (p
CSF

 = 0.007; 

p
Serum

  =  0.1) were upregulated with a 4-fold difference in 

serum and 1.1-fold difference in CSF. CSF expression of IL-1B 

(p
CSF

 = 0.001) and IL-12 (p
CSF

 = 1.4 × 10−5) was upregulated in KLS. 

Additionally, microglial activity in KLS is shown through differ-

ential expression of IL-34 (p
CSF

 < 10−6), CSF-1 (p
CSF

 = 0.004), IL-1B 

(p
CSF

 = 0.0006), IL-6 (p
CSF

 = 0.007), and IGF-1 (p
CSF

 = 1.6 × 10−6). These 

suggest interactions with cell genesis and myelination activity. 

Interestingly, expression of IL-34 is also increased (logFC = 1.43, 

p
CSF

 < 10−6) in KLS patients while expression of the protein CSF-1 

is decreased (logFC  =  0.76, p
CSF

  =  0.004). Upregulation of IL-4 

(logFC = 1.1, p
CSF

 = 6 × 10−5) and IL-13 (logFC = 1.1, p
CSF

 = 6 × 10−4) 

also suggest M2 macrophage differentiation.

Proteomic based machine-learning predicts KLS status

The motivation to build a machine-learning classifier to pre-

dict KLS phenotype came from our univariate analyses and 

completed by a dimensionality reduction analysis by PCA, 

showing apparent separability between group along the first 

principal component axis in both CSF and serum (Supplementary 

Figure S5). These analyses revealed relatively large effect sizes 

between KLS cases and controls indicating feasibility. A  lasso-

based machine-learning framework with cross-validation was 

thus used to train CSF and serum classifiers predicting KLS 

status, and validated in independent datasets. Three models 

were trained: CSF model, serum model, and cross-tissue model 

(CSF on serum and vice versa), and validated. In addition, we 

benchmarked several machine-learning models against the 

lasso and found it to perform the best on both serum and CSF 

datasets. Results of the modeling are reported in Supplementary 

Tables S9 and S10.

The CSF model was trained on a cohort of 103 individuals 

(22.3% KLS cases with n  =  23) with leave-one-out cross valid-

ation. This trained CSF model was then validated in a cohort 

of 61 individuals (11.5% KLS cases with n = 7). As our training 

and validation cohorts were assayed on two different CSF 

SomaScan matrices with varying number of protein targets, an 

intersection of proteins (n  =  504) present in both batches was 

used as an input to the lasso model with only a simple log-2 

normalization. Notably, the CSF model achieved an AUC of 

0.98 ([0.96–1], 95% confidence interval [CI]) in cross validation. 

Of significance, when this CSF model was evaluated in the val-

idation CSF dataset, the model classified KLS cases accurately 

achieving an AUC of 0.90 ([0.78–1], 95% CI) (see Figure 2, A for 

receiver operating curve [ROC], and Supplementary Figure S3 

Table 1. Proteins dysregulated in the CSF of patients versus controls (unmatched and matched)

Protein 

Unmatched  

KLS (n = 23); controls (n = 80)

Matched  

KLS (n = 20); controls (n = 20)

Association with  

time of collection 

logFC FDR p logFC FDR p FDR

DKK4 −1.43 2.5E−07 2.2E−10 −1.44 3.8E−05 1.3E−07 2.7E−04

VWF −0.74 5.0E−07 1.1E−09 −0.78 1.3E−04 1.1E−06 5.7E−02

GPI −1.73 5.0E−07 1.3E−09 −1.91 6.1E−06 5.4E−09 1.6E−02

PGF −1.26 9.5E−07 3.4E−09 −1.18 5.7E−04 1.6E−05 4.8E−02

C9 −0.84 1.3E−06 5.7E−09 −0.87 1.1E−04 7.6E−07 4.4E−02

IL17B −1.13 2.3E−06 1.2E−08 −1.18 8.1E−05 5.0E−07 3.2E−02

TFPI −0.93 4.0E−06 2.8E−08 −0.77 1.4E−03 7.9E−05 1.1E−02

TGFB2 0.78 4.0E−06 3.0E−08 0.96 2.3E−04 3.1E−06 2.4E−02

DKK1 −0.64 4.0E−06 3.2E−08 −0.69 6.5E−04 2.5E−05 1.6E−02

CCDC80 −0.68 9.5E−06 8.5E−08 −0.73 3.3E−04 5.8E−06 2.7E−03

IL34 0.59 9.8E−06 9.6E−08 0.72 7.4E−05 3.3E−07 1.7E−01

HGF −0.83 1.0E−05 1.3E−07 −0.82 3.8E−04 8.2E−06 3.6E−02

PLA2G2A −1.20 1.0E−05 1.3E−07 −1.25 3.8E−04 9.6E−06 2.7E−02

IGF1 0.68 1.0E−05 1.4E−07 0.85 1.3E−05 2.3E−08 6.7E−02

JAM2 0.35 1.0E−05 1.4E−07 0.28 3.8E−03 3.3E−04 5.2E−01

FABP3 −0.57 1.5E−05 2.2E−07 −0.66 8.1E−05 5.0E−07 4.4E−03

IL1RL1 −1.35 1.9E−05 2.9E−07 −1.45 8.2E−04 3.4E−05 1.1E−01

NXPH1 −0.85 1.9E−05 3.1E−07 −0.98 3.3E−04 5.8E−06 1.6E−02

INHBA −0.71 2.0E−05 3.5E−07 −0.83 3.3E−04 5.8E−06 1.7E−01

LBP −1.49 2.0E−05 3.5E−07 −1.65 3.0E−03 2.3E−04 2.4E−02

ITGAV ITGB5 −0.49 2.6E−05 4.8E−07 −0.58 5.7E−04 1.8E−05 5.1E−02

BGN −1.01 3.0E−05 5.9E−07 −1.06 1.0E−03 5.2E−05 1.1E−01

IL27 EBI3 0.17 3.3E−05 6.7E−07 0.19 3.2E−04 4.9E−06 4.8E−02

TNFRSF6B −0.54 3.8E−05 8.1E−07 −0.61 3.2E−03 2.5E−04 4.5E−02

CASP10 0.52 4.0E−05 8.9E−07 0.60 6.5E−04 2.3E−05 7.7E−02

GNLY −1.45 6.2E−05 1.4E−06 −1.29 5.8E−03 6.0E−04 2.4E−02

SPARC 0.66 6.5E−05 1.6E−06 0.84 3.8E−05 1.3E−07 1.6E−02

CD163 −0.49 9.3E−05 2.3E−06 −0.60 8.9E−04 3.9E−05 3.1E−02

LogFC is log fold change, FDR is false discovery rate.
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Table 2. Proteins dysregulated in the serum of patients versus controls (unmatched and matched)

Protein 

Unmatched  

KLS (n = 20); controls (n = 54)

Matched  

KLS (n = 20); controls (n = 20)

Association with  

time of collection 

logFC FDR p logFC FDR p FDR

FYN 2.5 1.3E−06 1.2E−09 2.3 1.7E−05 3.0E−08 8.0E−05

CSK 2.7 5.4E−06 1.8E−08 2.3 6.0E−05 7.6E−07 2.7E−04

DUSP3 2.0 5.4E−06 2.5E−08 1.9 6.0E−05 9.3E−07 3.6E−04

HIST3H2A 3.4 5.4E−06 1.9E−08 3.4 1.8E−04 5.8E−06 6.9E−04

METAP1 2.3 5.4E−06 2.2E−08 2.2 1.9E−05 5.1E−08 3.6E−03

PTPN11 1.9 5.4E−06 2.9E−08 1.7 7.4E−05 2.0E−06 4.1E−05

TBP 0.7 5.7E−06 3.6E−08 0.6 2.8E−04 1.6E−05 7.3E−07

BTK 1.9 6.1E−06 7.7E−08 1.7 6.0E−05 9.3E−07 7.3E−03

EIF4G2 2.4 6.1E−06 8.8E−08 2.4 5.7E−05 4.1E−07 4.9E−03

ENPP7 −1.6 6.1E−06 7.2E−08 −1.2 4.5E−04 2.9E−05 4.7E−04

HIST1H1C 2.7 6.1E−06 6.3E−08 2.5 7.4E−05 2.0E−06 8.1E−05

HSD17B1 0.8 6.1E−06 8.8E−08 0.7 2.5E−04 1.1E−05 7.3E−07

ICOSLG 2.8 6.1E−06 5.8E−08 2.5 2.0E−04 6.9E−06 3.1E−05

PTPN6 1.9 6.1E−06 8.2E−08 1.5 1.0E−03 1.4E−04 1.4E−05

TPT1 1.9 6.1E−06 5.8E−08 1.9 6.9E−05 1.4E−06 7.3E−03

VTA1 2.4 6.1E−06 7.2E−08 2.0 1.4E−04 4.1E−06 3.6E−04

AIF1 0.9 6.2E−06 9.5E−08 0.7 1.0E−03 1.2E−04 5.8E−06

TIMP2 0.6 6.5E−06 1.1E−07 0.6 6.0E−05 8.5E−07 7.6E−04

AKT2 1.4 7.2E−06 1.5E−07 1.4 6.0E−05 7.6E−07 6.3E−06

CD226 0.9 7.2E−06 1.4E−07 1.0 2.3E−04 8.6E−06 6.0E−02

CMA1 0.8 7.2E−06 1.6E−07 0.8 2.8E−04 1.6E−05 7.3E−07

PRKAA2 PRKAB2 PRKAG1 1.2 7.2E−06 1.5E−07 1.1 2.3E−04 9.7E−06 6.3E−06

TOP1 1.1 7.2E−06 1.6E−07 1.1 2.5E−04 1.1E−05 3.6E−06

TPM4 2.2 7.2E−06 1.6E−07 2.1 6.6E−05 1.1E−06 1.3E−02

VAV1 2.2 7.2E−06 1.2E−07 1.8 8.4E−04 9.1E−05 2.5E−03

EFNB3 0.4 7.4E−06 2.1E−07 0.4 6.0E−05 9.3E−07 1.3E−04

EPS15L1 1.2 7.4E−06 1.7E−07 1.3 6.0E−05 7.6E−07 7.7E−03

FER 2.4 7.4E−06 2.1E−07 2.5 6.0E−05 9.3E−07 1.2E−02

IL13RA1 −0.8 7.4E−06 2.1E−07 −0.6 4.9E−04 3.9E−05 1.8E−03

IL16 0.7 7.4E−06 2.0E−07 0.5 7.0E−04 6.9E−05 1.9E−06

IL1R1 −0.9 7.4E−06 2.1E−07 −0.8 2.3E−04 9.7E−06 1.4E−03

SFTPD 3.0 7.4E−06 1.9E−07 3.0 2.2E−03 3.3E−04 6.0E−05

CEBPB 0.8 7.4E−06 2.3E−07 0.7 2.6E−04 1.3E−05 4.4E−05

STAT6 0.8 7.4E−06 2.3E−07 0.7 4.9E−04 3.7E−05 1.4E−05

STIP1 1.6 7.7E−06 2.4E−07 1.4 5.9E−04 5.2E−05 5.1E−05

CAMK2A 1.2 7.8E−06 2.6E−07 1.1 4.7E−04 3.4E−05 1.1E−06

RPS6KA3 1.4 7.8E−06 2.6E−07 1.3 5.9E−04 5.2E−05 4.1E−04

UBE2I 1.5 8.6E−06 3.0E−07 1.4 7.7E−04 7.9E−05 1.9E−03

HNRNPAB 2.0 9.0E−06 3.2E−07 1.8 4.7E−04 3.4E−05 8.5E−06

CTSG 0.8 9.1E−06 3.4E−07 0.7 2.6E−04 1.3E−05 1.9E−05

SUMO3 1.6 9.1E−06 3.4E−07 1.4 4.0E−04 2.5E−05 1.0E−02

HMGB1 1.1 9.7E−06 3.8E−07 1.0 8.4E−04 9.1E−05 2.3E−07

IDS −0.9 9.7E−06 4.1E−07 −0.7 7.0E−04 6.9E−05 7.2E−03

MAPK14 0.9 9.7E−06 4.1E−07 0.9 1.0E−03 1.2E−04 7.5E−05

NUDCD3 1.1 9.7E−06 4.1E−07 1.2 7.1E−05 1.7E−06 1.1E−02

TEC 0.8 9.7E−06 3.8E−07 0.8 7.1E−05 1.7E−06 1.1E−02

TIE1 −0.4 9.7E−06 4.1E−07 −0.4 3.6E−04 2.1E−05 3.1E−02

PRKCD 0.5 1.0E−05 4.4E−07 0.4 5.9E−04 5.2E−05 1.4E−05

GFRA3 0.4 1.1E−05 4.7E−07 0.4 2.6E−04 1.3E−05 9.7E−06

CAMK2B 1.6 1.1E−05 5.3E−07 1.3 1.0E−03 1.4E−04 1.2E−06

CAMK2D 1.6 1.1E−05 5.3E−07 1.4 6.5E−04 6.0E−05 1.2E−06

CDH1 −0.6 1.1E−05 5.3E−07 −0.5 2.5E−04 1.1E−05 5.1E−05

KAT6A 0.4 1.1E−05 5.0E−07 0.4 8.6E−05 2.4E−06 3.1E−06

LBP −0.9 1.1E−05 5.3E−07 −0.8 2.8E−04 1.6E−05 1.5E−02

MMP17 0.8 1.1E−05 5.3E−07 0.7 2.2E−04 8.2E−06 1.6E−05

CCL13 0.7 1.1E−05 5.6E−07 0.7 7.4E−05 2.0E−06 1.1E−03

DDX19B 1.4 1.1E−05 5.6E−07 1.2 1.0E−03 1.2E−04 9.6E−04

XRCC6 1.3 1.1E−05 5.6E−07 1.0 6.7E−03 1.4E−03 3.6E−07

CYP3A4 0.8 1.1E−05 6.0E−07 0.7 7.0E−04 6.9E−05 1.8E−03

HNRNPA2B1 2.0 1.2E−05 6.4E−07 1.9 2.4E−03 3.7E−04 8.0E−05

GDF15 −0.6 1.2E−05 6.6E−07 −0.4 1.3E−03 1.7E−04 1.2E−01
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Protein 

Unmatched  

KLS (n = 20); controls (n = 54)

Matched  

KLS (n = 20); controls (n = 20)

Association with  

time of collection 

logFC FDR p logFC FDR p FDR

TAGLN2 1.5 1.2E−05 6.8E−07 1.6 5.7E−05 4.1E−07 1.2E−02

CXCL8 3.4 1.3E−05 7.3E−07 3.9 5.7E−05 3.3E−07 7.6E−02

CLIC1 1.0 1.5E−05 8.8E−07 0.8 4.9E−04 3.9E−05 6.3E−06

SNX4 1.0 1.6E−05 9.4E−07 0.8 7.7E−04 7.9E−05 2.6E−04

YWHAB YWHAE YWHAG  

YWHAH YWHAQ YWHAZ SFN

0.9 1.6E−05 9.4E−07 0.8 2.8E−04 1.6E−05 2.2E−05

IMPDH1 2.1 1.7E−05 1.0E−06 2.0 2.6E−03 4.2E−04 4.2E−05

H2AFZ 2.3 1.7E−05 1.1E−06 2.2 4.7E−04 3.4E−05 6.3E−06

IGF1 0.5 1.7E−05 1.1E−06 0.6 3.7E−05 1.3E−07 9.3E−03

PRKCZ 0.7 1.8E−05 1.1E−06 0.6 9.2E−04 1.0E−04 1.4E−05

LAMA1 LAMB1 LAMC1 −0.5 1.8E−05 1.2E−06 −0.5 3.2E−04 1.8E−05 2.2E−02

LYN (Duplicate 1/2) 1.6 1.8E−05 1.2E−06 1.2 2.4E−03 3.7E−04 2.0E−05

SBDS 1.3 1.8E−05 1.2E−06 1.1 4.0E−04 2.5E−05 7.5E−05

BPI 2.4 1.9E−05 1.3E−06 2.7 6.9E−05 1.4E−06 6.4E−02

NAGK 1.1 1.9E−05 1.3E−06 1.0 9.2E−04 1.0E−04 1.9E−06

RPS7 1.4 1.9E−05 1.3E−06 1.2 4.8E−03 9.3E−04 1.2E−05

FCGR1A 0.5 1.9E−05 1.4E−06 0.5 5.1E−04 4.2E−05 2.3E−04

FSTL3 −0.5 1.9E−05 1.4E−06 −0.4 6.2E−03 1.3E−03 4.2E−02

SSRP1 0.8 1.9E−05 1.4E−06 0.7 1.3E−03 1.8E−04 1.3E−04

EIF4A3 0.4 2.1E−05 1.6E−06 0.4 1.0E−03 1.2E−04 1.9E−05

PDPK1 1.9 2.1E−05 1.6E−06 1.4 1.1E−02 2.9E−03 2.2E−04

CTSE 0.4 2.2E−05 1.6E−06 0.5 1.8E−04 5.8E−06 2.3E−02

PRSS2 −0.9 2.2E−05 1.6E−06 −0.7 3.2E−03 5.3E−04 4.1E−02

ESR1 0.5 2.3E−05 1.8E−06 0.5 2.2E−04 8.2E−06 5.9E−05

PDXK 1.1 2.3E−05 1.8E−06 0.9 4.8E−03 9.3E−04 2.8E−05

INSR −0.6 2.5E−05 2.0E−06 −0.4 4.5E−03 8.4E−04 6.1E−02

TNFRSF25 −0.7 2.5E−05 2.0E−06 −0.6 2.0E−03 2.9E−04 2.1E−03

HDGFRP2 0.3 2.7E−05 2.1E−06 0.2 6.2E−03 1.3E−03 7.3E−07

MAPK12 0.5 2.7E−05 2.2E−06 0.6 2.3E−04 9.7E−06 3.8E−03

LCK 0.4 2.7E−05 2.2E−06 0.3 1.1E−02 2.9E−03 7.3E−07

TPI1 1.4 2.7E−05 2.2E−06 1.4 8.4E−04 9.1E−05 3.0E−03

S100A12 1.7 2.8E−05 2.4E−06 1.7 1.0E−03 1.4E−04 3.0E−03

TFPI −0.9 2.8E−05 2.4E−06 −0.9 4.7E−04 3.4E−05 2.3E−03

SELL 0.4 3.0E−05 2.5E−06 0.3 1.0E−03 1.4E−04 1.3E−04

TNFSF14 1.1 3.0E−05 2.5E−06 1.1 6.6E−05 1.1E−06 2.6E−02

DAPK2 0.7 3.1E−05 2.7E−06 0.5 1.1E−02 2.9E−03 3.9E−07

PRKCI 0.8 3.1E−05 2.7E−06 0.6 2.9E−03 4.7E−04 2.7E−05

CSNK2A1 0.3 3.2E−05 2.9E−06 0.3 4.9E−04 3.7E−05 1.5E−04

CLEC1B 0.7 3.4E−05 3.0E−06 0.5 1.2E−03 1.6E−04 5.2E−02

MAPK13 0.6 3.5E−05 3.1E−06 0.4 1.5E−02 4.3E−03 1.3E−03

HMOX2 0.6 3.5E−05 3.2E−06 0.5 9.2E−03 2.2E−03 6.2E−06

MATN3 0.5 3.7E−05 3.4E−06 0.5 4.5E−04 2.9E−05 6.2E−06

UBE2N 1.4 3.9E−05 3.6E−06 1.4 1.4E−03 2.0E−04 1.0E−02

CFL1 0.9 4.1E−05 3.8E−06 0.8 2.9E−03 4.7E−04 1.3E−03

RBM39 1.3 4.1E−05 3.8E−06 1.1 1.3E−02 3.5E−03 3.4E−04

LGALS3 −0.4 4.5E−05 4.3E−06 −0.3 6.2E−03 1.3E−03 9.5E−03

UFM1 1.2 4.5E−05 4.3E−06 1.2 6.5E−04 6.0E−05 2.1E−03

DSC2 −0.4 4.7E−05 4.6E−06 −0.3 1.3E−02 3.5E−03 6.8E−04

PAFAH1B2 1.0 4.7E−05 4.6E−06 1.0 1.0E−03 1.4E−04 4.9E−05

TP53 0.7 4.9E−05 4.9E−06 0.5 9.2E−04 1.0E−04 5.0E−03

BMPER 0.4 5.4E−05 5.5E−06 0.5 7.1E−05 1.7E−06 6.1E−04

EFNB2 −0.5 5.4E−05 5.5E−06 −0.4 4.1E−03 7.5E−04 3.8E−02

IDUA 0.7 6.0E−05 6.2E−06 0.7 2.3E−04 9.7E−06 1.1E−03

SFRP1 −1.0 6.0E−05 6.2E−06 −1.0 4.7E−04 3.4E−05 3.0E−02

BMP6 −1.1 6.3E−05 6.5E−06 −0.9 2.6E−03 4.2E−04 1.8E−03

LYN (Duplicate 2/2) 1.5 6.3E−05 6.5E−06 1.0 1.5E−02 4.3E−03 9.4E−05

CA13 2.1 6.5E−05 6.9E−06 2.2 2.2E−04 8.2E−06 5.3E−02

RAC3 0.9 6.5E−05 6.9E−06 0.9 1.4E−03 2.0E−04 9.4E−06

TKT 1.2 6.5E−05 6.9E−06 1.2 1.6E−03 2.3E−04 6.3E−03

NCK1 0.5 6.8E−05 7.3E−06 0.4 1.5E−02 4.3E−03 1.1E−01

Table 2. Continued
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for boxplots). The coefficients of the model are presented in 

Supplementary Table S11. Because of known variability in the 

selection of features with lasso modeling, we then asked what 

are the top protein features that are robustly predictive of KLS 

status (both in-episode and other KLS samples) in the CSF 

model. A bootstrap analysis (see methods) identified a panel of 

eight proteins to be particularly enriched at least 70% of the time 

in 1000 instances of training (see Supplementary Table S12). 

These eight proteins were TFPI (100%), vWF (99%), IL-34 (97%), 

PHI (96%), C9 (92%), albumin (87%), IL-1a (74%), and LBP (73%) in 

the CSF model.

The serum model was trained on a cohort of 74 individuals 

(27.0% KLS cases with n = 20) with n-fold cross validation. This 

trained serum model was then validated in a cohort of 17 in-

dividuals (35.3% KLS cases with n  =  6). Although limited by 

sample number in the validation cohort, the serum model per-

formed well with an AUC of 0.96 ([0.91–0.99], 95% CI) in cross 

validation and notably with an AUC of 1 ([1–1], 95% CI) in the 

A B C

Figure 2. Receiver-operator curves for the classifier cross-validated training and independent validations with CIs at 95% obtained with bootstrapping. The lasso 

models are trained on the intersection of the available protein in each dataset. Data are normalized in each dataset before performing the training and validation task. 

(A) For CSF training set (n = 103 [23 KLS cases, 80 controls], number of features = 504), the cross-validated training shows an AUC of 0.98 [0.96–1] in blue and signifi-

cantly validates on the independent cohort (n = 61) with an AUC of 0.90 [0.78–1] in gray. (B) For serum (n = 74 [20 KLS cases, 54 controls], number of features = 602), AUC 

of 0.96 [0.91–0.99] on training in blue and significantly validates on the independent cohort (n = 17) with and AUC of 1 [1–1] in gray (in this case, because of the AUC of 

1, a proper CI cannot be obtained). (C) For the models across tissue, the first model in gray is trained on CSF (n = 103, number of features = 505) and tested on serum 

samples and significantly discriminates between KLS and controls with an AUC of 0.80 [0.69–0.89]. Similarly, the model trained on serum in blue discriminates CSF 

samples with an AUC of 0.71 [0.59–0.82].

Protein 

Unmatched  

KLS (n = 20); controls (n = 54)

Matched  

KLS (n = 20); controls (n = 20)

Association with  

time of collection 

logFC FDR p logFC FDR p FDR

MDM2 0.3 7.1E−05 7.8E−06 0.3 3.8E−04 2.3E−05 2.4E−04

SIGLEC7 −0.4 7.2E−05 8.0E−06 −0.4 3.6E−04 2.1E−05 1.3E−01

TGFB3 0.4 7.2E−05 8.0E−06 0.5 3.6E−04 2.1E−05 9.9E−04

PLXNB2 −0.5 7.3E−05 8.2E−06 −0.3 4.2E−02 1.5E−02 4.1E−03

RPS27A 1.3 7.3E−05 8.2E−06 1.2 3.4E−03 6.0E−04 3.0E−03

BCL2 0.6 7.5E−05 8.7E−06 0.6 8.4E−04 9.1E−05 1.9E−05

CASP3 1.0 7.5E−05 8.7E−06 0.8 2.4E−03 3.7E−04 2.0E−04

COL23A1 0.4 7.5E−05 8.7E−06 0.6 5.7E−05 2.6E−07 4.4E−02

F2 (Duplicate 1/2) −0.9 7.5E−05 8.7E−06 −0.9 4.9E−04 3.9E−05 1.3E−04

DSG2 −0.5 7.8E−05 9.2E−06 −0.5 2.5E−04 1.1E−05 4.3E−04

HK2 1.7 7.8E−05 9.2E−06 1.4 9.2E−03 2.2E−03 6.7E−06

PTPN1 0.8 7.8E−05 9.2E−06 0.5 4.8E−03 9.3E−04 6.8E−03

CHST2 0.5 8.0E−05 9.8E−06 0.5 1.0E−03 1.4E−04 3.5E−05

CLEC7A 0.3 8.0E−05 9.8E−06 0.3 6.9E−05 1.4E−06 1.1E−03

F2 (Duplicate 2/2) −1.1 8.0E−05 9.8E−06 −1.1 7.7E−04 7.9E−05 2.9E−03

PPIA 0.9 8.0E−05 9.8E−06 0.8 3.4E−03 6.0E−04 3.5E−02

DNAJB1 0.3 8.4E−05 1.0E−05 0.2 6.9E−03 1.5E−03 6.7E−06

IL3 0.5 8.8E−05 1.1E−05 0.4 2.9E−03 4.7E−04 8.2E−01

SLAMF7 −0.8 8.8E−05 1.1E−05 −0.9 2.3E−04 9.7E−06 3.0E−02

ACP1 1.4 9.2E−05 1.2E−05 1.3 1.2E−03 1.6E−04 3.5E−04

SELP 1.0 9.7E−05 1.2E−05 1.0 4.7E−04 3.4E−05 2.0E−01

LogFC is log fold change, FDR is false discovery rate.

Table 2. Continued
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independent validation cohort (see Figure 2, B for ROC curve, 

and Supplementary Figure S4 for boxplots). Again, the coeffi-

cients of the model are presented in Supplementary Table S11. 

Dissecting the top predictors in the serum model using boot-

strapping, we observed that 5 proteins are selected at least 70% 

in 1000 training instances. These proteins are ENPP7 (96.3%), 

FYN (91.5%), H2A3 (90.6%), LBP (88.4%), and CD226 (84%) (see 

Supplementary Table S13). They represent the most robust pre-

dictors of KLS status in the serum model.

Even more strikingly, we found that the CSF model also clas-

sified KLS status with high accuracy when validated on the 

serum proteomics (AUC  =  0.8 [0.69–0.89] 95% CI, p  =  8  ×  10−5, 

Mann–Whitney rank sum test on the predictions) whereas the 

serum model when validated on CSF proteomics performed 

moderately (AUC = 0.71 [0.59–0.82] 95% CI, p = 0.002) (see Figure 

2, C). The proteins with nonzero coefficients used in the fitted 

lasso models are reported in Supplementary Table S11 and iden-

tify a predictive feature set of 17 proteins for serum and 6 pro-

teins for CSF.

Machine learning can predict in-episode KLS cases 
versus rest

As the largest effects were found in KLS cases that were experi-

encing an episode, predictions of CSF and serum models and the 

most informative features differences are strikingly pronounced 

for in-episode versus the rest of KLS samples. In the case of the 

CSF model, median prediction value (which can be interpreted 

as probabilities for being a case) was for controls 0.10 (interquar-

tile range [IQR] 0.076–0.165), while for KLS samples out of epi-

sode and other KLS labels it was 0.47 (IQR 0.319–0.497) and for 

KLS samples in-episode it was 0.61 (IQR 0.536–0.788). In the CSF 

model, separation of KLS in-episode versus samples out of epi-

sode and other KLS labels had an AUC of 0.76 [0.55–0.97] 95% CI. 

For the serum model, median prediction value for controls was 

0.004 (IQR 0.0006–0.05), while for KLS samples out of episode and 

other KLS labels it was 0.79 (IQR 0.62–0.96) and for KLS samples 

in-episode it was 0.96 (IQR 0.91–0.97). In the serum model, separ-

ation of KLS in-episode versus samples out of episode and other 

KLS labels had an AUC of 0.69 [0.43–0.95] 95% CI. Further, some 

of the top hits found in the univariate analysis in association 

with KLS also differentiated in versus out of episode status. 

For example, TGFB2, DKK4, ALB, IGF-1, JAM2, and CASP10 were 

among the top 10 proteins in CSF and ENPP7, H2A3, TBP, sTie-1, 

and B7-H2 were among the top 10 protein hits in serum. These 

results are shown in Supplementary Figures S6–S9.

Mapping protein disturbances to specific brain regions

To help interpretation of the protein signature identified, we 

performed tissue enrichment analysis with focus on brain and 

immune tissues. Interestingly, a disruption of brain tissue-

specific region proteins was observed in KLS versus control 

CSF when pooling up- and downregulated perturbed proteins 

(p = 6 × 10−5, chi-square test on the overall distribution of brain-

specific proteins differentially expressed for KLS). Specifically, 

we show upregulation of cerebellum and midbrain-specific pro-

teins (p = 0.005 and p = 0.05), and downregulation of pons and 

medulla proteins (p = 2 × 10−4). Other comparisons were unre-

markable (see Table 3 and Supplementary Table S14).

Discussion

Our study interrogates the proteomic architecture of KLS pa-

tients versus matched controls in two different tissues (serum 

and CSF) using high-throughput proteomic SomaScan as-

says. Our univariate analyses found 28 and 141 proteins (see 

Supplementary Tables S7 and S8) to be differentially expressed 

in CSF and serum, respectively (FDR <0.1%). Of significance, DEPs 

in CSF tended to be related to microglial–monocyte axis. As a re-

sult of finding relatively large effects in univariate analysis, we 

trained a machine-learning classifier to predict KLS status using 

either CSF or serum protein measurements. These performed 

robustly achieving mean AUCs of 0.90 ([0.78–1], 95% CI) and 1.0 

([0.78–1], 95% CI) when evaluated in validation cohorts, respect-

ively. Further, differences between in-episode versus other KLS 

samples were even larger and reflected a general dysregulated 

proteomic makeup in both CSF and serum during episodes. 

These promising results suggest initial diagnostic potential of 

the identified protein markers.

Several of the top differentially regulated proteins in CSF 

belong to the microglial–monocyte–macrophage axis. These 

include IL-34 and CSF-1, two critical ligands of the CSF-1R 

(colony-stimulating factor 1 receptor), a receptor present on 

mononuclear phagocytes [59]. CSF-1R promotes survival and 

drives differentiation from monocytes to macrophages [59]. 

Although these two proteins share no sequence homology, 

they have functionally identical roles driving different cytokine 

Table 3. Brain region-specific proteins are dysregulated in the CSF 

of KLS patients

Tissue 

Tissue-specific  

protein n p % 

Upregulated in KLS

 Amygdala 10 0 0.23 0

 Cerebellum 57 0 5E-03 0

 Cerebral cortex 144 26 0.19 18

 Hippocampal formation 10 3 0.17 30

 Hypothalamus 4 0 0.44 0

 Midbrain 29 8 0.05 28

 Pons and medulla 31 3 0.51 10

 Thalamus 2 1 0.17 50

 All brain 287 41 7E−03 14

Downregulated in KLS

 Amygdala 10 0 0.27 0

 Cerebellum 57 5 0.47 9

 Cerebral cortex 144 12 0.2 8

 Hippocampal formation 10 1 0.83 10

 Hypothalamus 4 0 0.48 0

 Midbrain 29 6 0.17 21

 Pons and medulla 31 11 2E-04 35

 Thalamus 2 0 0.61 0

 All brain 287 35 5E−03 12

Up- or downregulated in KLS

 Amygdala 10 0 0.1 0

 Cerebellum 57 5 0.01 9

 Cerebral cortex 144 38 0.86 26

 Hippocampal formation 10 4 0.37 40

 Hypothalamus 4 0 0.3 0

 Midbrain 29 14 0.02 48

 Pons and medulla 31 14 0.04 45

 Thalamus 2 1 0.5 50

 All brain 287 76 6E−05 26
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secretions in macrophages [60], with IL-34 predominantly stimu-

lating eotaxin-1, IL-10, and CCL10 release while CSF-1 stimulates 

MCP-1 secretion. In our study, IL-34 was upregulated while CSF-1 

was downregulated. Further, other cytokines positively regu-

lated by IL-34 were also significantly upregulated, for instance 

IL-10. Although eotaxin-1 was present in our CSF panel, we did 

not observe significant changes in KLS cases versus controls. In 

agreement with the CSF-1 involvement, MCP-1, a known factor 

promoted by CSF-1, was also downregulated in KLS cases.

IL-34 is predominantly secreted by neurons and has been 

involved in promoting the survival of microglia [60]. It is ex-

pressed predominantly in the cortex, olfactory nucleus, and 

the hippocampus but not in the brainstem and cerebellum. Of 

interest, IL-34 treated microglial cells, when cocultured with 

neurons, triggers secretion of TGF-beta and this negatively 

regulates proliferation of microglia, promoting neuroprotection 

[61]. In agreement with this hypothesis, we observed signifi-

cantly elevated CSF TGF-beta-2 and TGF-beta-1 in KLS cases. 

Increased IL-34 could thus serve as a compensatory mechanism 

to limit excitotoxin-induced neuronal cell loss and gliosis [62]. 

Neuronal excitotoxicity is typically caused by prolonged ex-

posure to glutamate, a major excitatory neurotransmitter, pos-

sibly explaining why we also observed increased caspase-10, an 

apoptosis-related protein of the extrinsic apoptosis pathway 

[63]. A plausible hypothesis for these changes could therefore be 

that an increased baseline state of neuronal excitability triggers 

KLS episodes with increased IL-34 in CSF serving as a compen-

satory mechanism to limit neurotoxiciy. This could also explain 

the observation why gamma-hydroxybutyrate, a strong seda-

tive, has triggered KLS episodes in some patients [64, 65].

Consistent with a hypothesis of neuroinflammation, we also 

observed JAM-b to be increased in CSF from KLS cases; JAM-b 

has been implicated as a critical factor that promotes leukocyte 

extravasation and transmigration [66]. Further, we also observed 

increased IL-27, a cytokine primarily secreted by myeloid cells 

such as macrophages, dendritic cells and microglia induced by 

immune stimuli [66]. Limited studies indicate a neuroprotective 

effect of IL-27 in CNS tissue but its mechanisms of action are not 

completely understood [67].

Independently of inflammation, other abnormalities were 

more neuronal in nature. Our analyses additionally found in-

creased IGF-1 expression in the CSF of KLS cases. IGF-1 is a 

growth factor primarily secreted by the liver peripherally and 

by specific neurons within the CNS [68]. IGF-1 has been ob-

served to be a pleiotropic growth factor critical for survival 

and differentiation of various cell types including neuronal 

cells [68]. IGF-1 is under the influence of growth hormone 

(GH) which in turn is modulated by ghrelin [69]. IGF-1 has 

been observed to have a linear relationship with caloric in-

take [70] and/or growth spurts during puberty [71]. Two pos-

sible explanations may be involved. First, the increased state 

of hypersomnia in KLS could promote secretion of GH [72, 73] 

as it is sleep dependent, and in-turn IGF-1 would be increased. 

Alternatively, as some KLS episodes are associated with 

megaphagia, increased caloric intake could suppress ghrelin 

and increase GH and IGF-1 [74].

Of significance, our CSF analysis also identified that a 

cluster of Dickkopf-related proteins (DKK) were consistently 

downregulated in KLS cases. The DKK proteins have been re-

ported to modulate Wnt/β-catenin signaling [75], a critical 

pathway with role in axon guidance, dendrite development and 

synapse formation [76]. In particular, DKK4 has been previously 

associated with schizophrenia [77]. More recently in agree-

ment with our findings, DKK proteins were observed to be 

downregulated in both bipolar disorder and schizophrenia [78]. 

Usage of lithium and other antipsychotic drugs could drive this 

dysregulated cluster of DKK proteins and in turn the Wnt/β-

catenin signaling pathways [79].

Although univariate analysis suggests that KLS was associ-

ated with an activation of the microglial–monocyte–macrophage 

axis, global analysis of tissue-specific protein changes found 

brain rather than immune-specific protein dysregulations, with 

changes more pronounced in proteins enriched in the brain-

stem, linking immune abnormalities to brainstem dysregulation. 

These brainstem disturbances are well positioned to dysregulate 

forebrain structures in a global fashion as observed in imaging 

studies. Changes in global protein profile were also reproducible, 

as we were able to extract interrelated proteomic features that 

consistently separated KLS patients from controls across CSF 

and serum. This result is remarkable considering the fact that 

two slightly different SomaScan arrays and procedures were 

used to train and test models, and the model trained on CSF 

performed well when tested on serum sample, suggesting com-

monality. This suggests that CSF and serum protein measure-

ments could be used in the diagnosis of KLS, although additional 

testing and use of larger protein panels would be warranted to 

confirm this finding.

The study has several limitations. First, the cross-sectional 

design of the present study precludes any inferences on caus-

ality. The number of measured proteins (several hundreds) out-

numbered sample size (hundred), a phenomenon known to lead 

to false-positive discoveries [80]. Second, by nature, protein data 

are highly correlated, reflecting coordinated interactions between 

biological entities [81]. Third, this study only provides a single 

time snapshot of the patient’s proteomic expression. Third, in 

eight KLS cases, we were unable to verify if the samples assayed 

were in-episode or out of episode. Finally, although we applied 

great care in eliminating many possible artifacts such as time 

of sample storage, the study used previously collected samples 

and may be confounded by an unknown variable. Specifically, 

the matching strategy performed was imperfect given the small 

number of cases and controls available, and resulted in un-

balanced demographics after matching, despite an overall im-

provement. Although these results are promising and replicated 

strongly, larger scale studies using newer panels of proteins, now 

able to measure 5500 proteins, in a larger number of KLS cases 

and controls is needed to confirm and extend on these findings. 

Additionally, future research should further examine the diag-

nostic potential of the identified protein markers with larger 

cohorts and using alternative proteomic techniques (e.g. mass 

spectrometry), as well as comparing the identified proteins with 

the proteomic profile of other disorders that commonly present 

with hypersomnia (e.g. severe depression, infectious disease) 

that would expedite the differential diagnosis of KLS.

Supplementary Material

Supplementary material is available at SLEEP online.
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