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Abstract

Study Objectives: Estimate the genetic relationship of cannabis use with sleep deficits and an eveningness chronotype.

Methods: We used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use 

behaviors. Secondly, we generated sleep deficit polygenic risk score (PRS) and estimated their ability to predict cannabis use behaviors using 

linear and logistic regression. Summary statistics came from existing genome-wide association studies of European ancestry that were 

focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction 

consisted of high-risk participants and participants from twin/family community-based studies (European ancestry; n = 760, male = 64%; 

mean age = 26.78 years). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use 

behaviors (lifetime ever use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms).

Results: Significant genetic correlation between lifetime cannabis use and an eveningness chronotype (rG = 0.24, p < 0.001), as well as 

between CUD and both short sleep duration (<7 h; rG = 0.23, p = 0.017) and insomnia (rG = 0.20, p = 0.020). Insomnia PRS predicted earlier age 

of first cannabis use (OR = 0.92, p = 0.036) and increased lifetime CUD symptom count (OR = 1.09, p = 0.012).

Conclusion: Cannabis use is genetically associated with both sleep deficits and an eveningness chronotype, suggesting that there are genes 

that predispose individuals to both cannabis use and sleep deficits.
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Statement of Significance

This study provides the first genomic-based evidence of a genetic relationship between both sleep deficits and an eveningness chronotype 

with cannabis use behaviors. These results complement prior twin studies and suggest that the relationship between these phenotypes can 

be partially explained by a common genetic liability, implying that the genetic influences on sleep deficits also have an influence on can-

nabis use. Furthermore, this is the first study to find a positive genetic relationship between an eveningness chronotype and cannabis use.
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Introduction

Cannabis is one of the most widely used psychoactive sub-

stances in the world [1] and has a well-documented but unclear 

relationship with sleep. Cannabis contains cannabinoids, which 

are the major contributors to psychoactive and medicinal ef-

fects [2]. The brain contains cannabinoid receptors, which are 

affected by exogenous cannabinoids and endogenous cannabin-

oids (i.e. produced within the brain). Together, these receptors 

and endogenous cannabinoids comprise the endocannabinoid 

system. The two most prominent exogenous cannabinoids are 

tetrahydrocannabinol (THC), the primary psychoactive can-

nabinoid, and cannabidiol (CBD), which appears to have add-

itional sedating and anxiolytic properties [3]. Evidence suggests 

that an interplay between THC and CBD may underlie a nu-

anced relationship with sleep. For example, acute/low-dose 

THC and high-dose CBD may aide sleep, but low-dose CBD and 

long-term/high-dose THC may interfere with sleep [4]. While 

cannabis is often associated with being a sleep aid [5–10], re-

peated cannabis use may lead to tolerance of its sleep-aid prop-

erties and consistent use is linked to negative sleep outcomes 

via habituation [4].

Increased frequency of cannabis use is associated with an 

assortment of sleep problems including prolonged latency to 

sleep onset [11], lower sleep duration [11–16], sleep disturbances 

[17], sleep quality problems [17–20], later bed times [15], and 

insomnia-related outcomes [12, 17, 19, 21–23]. These adverse 

effects might be specific to daily or chronic users, as a recent 

study found that daily cannabis users endorsed worse sleep 

quality and increased insomnia symptoms compared with both 

nonusers and non-daily users, but also found that nonusers and 

non-daily users demonstrated similar sleep scores [17]. Thus, 

irregular users might not experience the adverse sleep effects 

experienced by heavy users. Additionally, sleep disturbances are 

a primary withdrawal symptom of cannabis use disorders (CUD) 

and are often a leading risk factor for relapse, suggesting that 

those with ongoing CUD might suffer from continuous sleep 

issues stemming from discontinued use or attempts to abstain 

[4, 24]. Lastly, an eveningness chronotype (a diurnal preference 

for a sleep–wake pattern of activity and alertness in the evening 

which is linked to insomnia [25] and sleep complaints [26, 27]) is 

associated with increased cannabis frequency [28–30] and can-

nabis addiction [31].

In addition to cross-sectional association, there is evidence 

of early cannabis exposure and use predicting later sleep out-

comes. The fetal brain is densely inhabited with CB1 receptors 

that spread during gestation [32]. CB1 receptors are thought to 

be involved in the regulation of sleep processes since they are 

found in numerous regions of the brain associated with the 

sleep–wake cycle [33]. THC binds to CB1 receptors, and animal 

research implies this possibly modifies fetal cortical circuitry in 

the womb [34]. Several studies have found associations of pre-

natal cannabis exposure with early sleep factors, such as dif-

ferences in quiet time, irregular sleep, and sleep-related body 

movements a few days after birth [35], less efficient sleep and 

less total sleep time at three years of age [36], and increased 

endorsement of sleep disorder symptoms at age 9–10 years [37].

The endocannabinoid system also plays a critical role in 

the development of the adolescent brain [38] and because the 

brain is changing and developing well throughout early adult-

hood [39], could be susceptible to the effects of cannabis for a 

large part of the lifespan. A handful of studies have found that 

cannabis initiation and early use predict later sleep problems 

such as tiredness, trouble sleeping [22], short sleep duration [16, 

40], and insomnia-related outcomes [23]. Evidence exists for the 

reverse relationship as well, with premorbid insomnia [21] and 

generalized sleep problems [40–42] predicting later cannabis 

use. This effect appears strong in early development, such that 

early childhood sleep deficits predict cannabis use in later ado-

lescence [22, 43–45] and sleep factors during adolescence predict 

adult cannabis use [21, 46]. Lastly, endorsements of an adoles-

cent eveningness chronotype are associated with follow-up 

reports of increased cannabis use controlling for baseline ado-

lescent substance use [41]. With evidence of both cross-sectional 

associations and a bidirectional relationship between cannabis 

and sleep deficits/eveningness chronotype, there could be an 

underlying common liability such as shared or common gen-

etics responsible for this association.

The concept of common genetic liability is that the same 

genetic influences can act on distinct or separately measured 

phenotypes. This can be referred to as “shared genetics” or, more 

formally, genetic pleiotropy. That is, if phenotypes are genetic-

ally correlated, the relationship between those phenotypes can 

be partially explained by a common genetic liability (pleiotropy 

and shared genetics), implying that the genetic influences on 

one phenotype also have an influence on another phenotype. 

There is increasing evidence of a genetic relationship between 

cannabis use and sleep deficits, which may be biologically cen-

tered on the endocannabinoid system’s involvement in the 

circadian sleep–wake cycle [47–49]. Additionally, disruption of 

circadian genes might disturb the reward processing system, 

which can influence substance use [50, 51]. While research has 

shown evidence of common genetics between both alcohol and 

tobacco use and disorders with sleep outcomes using both twin 

studies and genomic methods (e.g. genetic correlations) [52–57], 

studies specifically focused on the genetic relationship between 

cannabis and sleep components remain scarce. Two twin studies 

have found evidence of shared genetics between cannabis use 

and sleep outcomes, specifically lower adult sleep duration [16] 

and adult insomnia outcomes [23]. Additionally, several clock 

gene polymorphisms have been linked to risk for cannabis ad-

diction [58].

Consistent with this literature, there is converging evidence 

that supports a shared genetic liability hypothesis. Recent large 

genome-wide association studies (GWAS) on sleep-related and 

chronotype variables [57, 59–62] have found genes and genetic 

pathways linked with both cannabis use or cannabinoid activity 

[63–69]. Likewise, several GWAS of lifetime cannabis use and 

CUD disorder [66, 67, 70, 71] have found genetic associations that 

are believed to be involved in circadian rhythm and sleep be-

haviors [72–75]. These studies imply genetic pleiotropy between 

cannabis use and sleep deficits, but research is needed to ana-

lyze the specific role of the potentially shared genetics in this 

relationship, especially using modern genomic methods.

As mentioned, modern GWAS have been used to identify in-

dependent genome-wide significant loci associated with various 

sleep traits and to estimate genome-wide single nucleotide poly-

morphism (SNP) heritability for several sleep-related traits such 

as chronotype (eveningness–morningness; 14%), sleep duration 

(10%), and insomnia (17%) [57, 59, 76] as well as for cannabis be-

haviors such as lifetime cannabis use (11%) [67] and CUD (4%) 
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[71]. These results suggest that the combined effects of common 

SNPs capture a considerable proportion of the heritability of 

various sleep behaviors and cannabis use behaviors. A polygenic 

risk score (PRS) is an individual measure of genetic propensity 

to a trait of risk that is generated by multiplying the number 

of risk alleles that an individual possesses at a particular SNP 

by the effect size from a discovery GWAS for that same SNP. By 

applying summary statistics from a large GWAS to a smaller 

genotyped target sample, PRS can be generated to estimate if 

genetic risk for a trait is associated with another trait, implying 

shared genetics between traits. Additionally, summary statis-

tics from GWAS can be used to analyze genetic correlations by 

using a technique called linkage disequilibrium score regression 

(LDSC) which estimates if the direction of the effect of SNPs is 

correlated between traits. Thus, LDSC analyzes if the direction of 

effect between the SNPs of two traits are correlated based on the 

whole genome, while PRS uses the genetic scores assigned to in-

dividuals (derived from a GWAS) to determine if the genetic risk 

attributed to the PRS can predict behaviors observed in a target 

sample and can readily control for covariates.

In this study, we first conducted genetic correlation analyses 

using the summary statistics of several large cannabis (lifetime 

cannabis use and CUD) and sleep (sleep duration, chronotype, 

and insomnia) GWAS to identify any significant genetic cor-

relations between the sleep deficits and cannabis use behav-

iors. Secondly, we generated PRS based on summary statistics 

of various large sleep-related GWAS (chronotype, sleep dur-

ation, and insomnia) and analyzed the ability of sleep trait PRS 

to predict cannabis measures in a target sample consisting of 

both high-risk participants and participants from twin/family 

community-based studies.

Methods

Participants

Our target data consisted of subjects who participated in a third 

wave of data collection from either the Center on Antisocial 

Drug Dependence (CADD) in Boulder, CO (PI: Hewitt) or the 

Genetics of Antisocial Drug Dependence (GADD) cohort from 

Denver, CO and San Diego, CA (PI: Hopfer). To generate accurate 

and bias-free PRS, the ideal analysis requires that the ancestry of 

the target data reflect the original GWAS data that the PRS was 

derived from [77]. With this in mind, we only included subjects 

in our target sample of European ancestry (n  =  868; identified 

by principal component analysis with the 1,000 Genome phase 

III European subsample as a reference [78]) in order to match 

the ethnicity of the discovery GWAS and avoid biased poly-

genic score estimates [79]. Among those in the sample with a 

family member (206 total subjects were nested within a family), 

we kept one member of each family at random to make our 

final sample 760 subjects. Removing subjects from the same 

family allowed us to avoid the potential convergent complica-

tions of using mixed-effects models as well to avoid the role of 

the shared environment amongst family members. Of our re-

maining sample, we had 622 subjects from the CADD and 138 

from the GADD. Subjects from the CADD included data from the 

Colorado Adoption Project (n = 5; [80]), Longitudinal Twin Study 

(n = 143; [81]), Community Twin Sample (n = 315; [81]), and the 

Adolescent Substance Abuse Project (n = 115; [82]). In addition to 

the San Diego and Denver subsamples of the GADD, 44 subjects 

in this consortium were part of a separate study (PI: Hopfer, 

DA035804) that were integrated into the third wave of the GADD. 

The final sample was 64% male (n = 491) with an average age of 

26.78 years (SD = 3.09, range = 19–37).

Measures

Cannabis measures in the target sample

Cannabis measures in our target sample were self-reported 

via a supplement to the Composite International Diagnostic 

Interview Substance Abuse Module (CIDI-SAM) [83]. Any/lifetime 

cannabis use was measure with a screening question regarding 

lifetime cannabis use (“Have you ever used cannabis?”). Subjects 

who endorsed any lifetime cannabis use (n  =  593; no lifetime 

cannabis use as the reference group) were asked a series of 

cannabis-related questions, including age of first use (“How old 

were you the first time you used cannabis?”; mean = 15.28 years, 

SD = 3.10), and number of lifetimes uses (“How many times in 

your life have you used cannabis?”). Responses for number of 

lifetime cannabis uses included: “1–2 times” (n = 36), “3–5 times” 

(n = 57), “6–9 times” (n = 27), “10–19 times” (n = 41), “20–39 times” 

(n  =  39), and “40 or more times” (n  =  393), and were coded as 

1–5. Anyone who denied any lifetime cannabis use was assigned 

a 0 for the number of lifetime cannabis use (n = 167). Previous 

180-day cannabis use was measured by asking, “How many days 

have you used marijuana in the past six months (180 Days)?” 

(mean = 32.60, SD = 63.31). Past 180-day cannabis use was cat-

egorized as 0 days (n = 487), 1–100 days (n = 154), and more than 

100 days (n = 119).

We included several measures of DSM-IV CUD [84] taken from 

the CIDI-SAM to generate a measure that consisted of the sum 

of the number of both lifetime cannabis dependence and abuse 

symptoms endorsed (mean = 1.47, SD = 2.47, range = 0–11), with 

the goal of generating a variable conceptually similar to the uni-

dimensional symptom count of CUD in DSM-5 [85]. Research has 

determined that the cannabis abuse and dependence criteria of 

DSM-IV might not distinguish between two separate disorders 

or constructs [86] and that a unidimensional symptom count 

classifies CUD more appropriately [87]. Studies with DSM-IV 

cannabis dependence and abuse symptom data have utilized 

this summation technique to make a symptom count measure 

that is comparable to CUD reflecting a single disorder [87, 88].

Sleep measures in target data

Sleep measures in our target sample were assessed using the 

Jessor Health Questionnaire [89]. Sleep duration was assessed 

using two questions which asked, “How many hours of sleep 

do you typically get on a weekend?” and “How many hours of 

sleep do you typically get on a weekday?” with responses being 

“5 h or less,” “6 h,” “7 h,” “8 h,” “9 h,” “10 h,” or “11 h or more.” 

Our measures of short sleep duration were coded to match the 

GWAS we generated our PRS from [57]. Short sleep duration <7 h 

was coded as a 1 (n = 225 and n = 158) and the reference group of 

7–8 h sleep duration was coded as 0 (n = 471 and n = 395) for both 

weekday and weekend sleep, respectively. Those who reported 9 

or more hours were assigned an NA to match the coding of the 

sleep duration GWAS. Subjects also were asked: “How often do 

you feel tired or sleepy when you get up in the morning?,” “How 

often do you feel tired or low on energy in day?,” and “How often 

do you take a nap during the daytime?” with possible responses 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/4
4
/3

/z
s
a
a
1
8
8
/5

9
0
6
2
0
4
 b

y
 g

u
e
s
t o

n
 2

0
 S

e
p
te

m
b
e
r 2

0
2
2



4 | SLEEPJ, 2021, Vol. 44, No. 3

for these three questions being “almost never,” “once a week or 

so,” “2 or 3 times a week,” “nearly every day,” and “would rather 

not answer”; coded as 1–4 and NA.

Generating PRS

After removing duplicate SNPs, quality control performed in 

PLINK [90] included pruning variants based on missingness 

(>5%), minor allele frequency (<1%), and Hardy–Weinberg equi-

librium (p-value < 0.001) followed by pruning variants based on 

linkage disequilibrium (wherever r2 exceeds 0.20 within a 50 kb 

window). There were 1,089,148 SNPs available for generating PRS 

after applying QC. Effect sizes (reported as log odds ratios) from 

the discovery GWAS of dichotomously measured sleep traits [57, 

59, 76] were multiplied by the number of affected alleles at each 

individual SNP in our target sample to generate a unique PRS 

for each participant. Each participant in our data was assigned 

a PRS for each sleep trait by applying the GWAS effect size to 

their genomic data equating to a summation of log odds ratios 

weighted genotypes per individual [91]. That is, each participant 

in our data was assigned a PRS for each sleep trait, by applying 

GWAS effect sizes to their genomic data. Each PRS comprised 

of all SNPs that passed quality control steps (all p < 1) and thus 

explained the highest variance in the sleep phenotypes in our 

target sample. This is consistent with work suggesting that com-

plex traits display a high amount of polygenicity and that using 

only genome-wide significant SNPs may exclude many SNPs 

with small but meaningful additive effects [92]; thus including 

all possible SNPs captures the highest amount of variance pos-

sible for a given trait [93, 94].

Summary statistics from sleep GWAS for PRS analysis and 

genetic correlations via LDSC

Sleep trait PRS effect sizes were generated from the summary 

statistics of several large sleep-related GWAS (all performed 

by the same research team) that utilized data of European an-

cestry from the UK biobank [57, 59, 76]. The sleep-related traits 

included self-report chronotype [59], short sleep duration 

(<7  h) [57], and self-reported insomnia symptoms [76]. The 

original chronotype GWAS utilized morningness, which was 

a binary measure of being a morning person or not (if partici-

pants endorsed any morningness measures as opposed to any 

eveningness measure) with morning people coded as 1 and 

evening people coded as 0.  For the purpose of this study and 

the emphasis on sleep deficits, we reverse coded this measure 

and interpreted the results as eveningness chronotype (127,622 

cases and 120,478 controls). Short sleep was defined as <7 h rela-

tive to 7–8 h sleep duration (106,192 cases and 305,742 controls). 

Severe insomnia (as defined by the GWAS) was classified using a 

self-report question: “Do you have trouble falling asleep at night 

or do you wake up in the middle of the night?,” with participants 

being dichotomized into controls (“never/rarely,” n  =  108,357) 

and frequent insomnia symptoms (“usually,” n  =  129,270) and 

with those reporting “sometimes” excluded. These same sum-

mary statistics were used for the genetic correlation analysis.

Summary statistics from cannabis GWAS for genetic 

correlations via LDSC

Summary statistics from several large scale GWAS of cannabis 

use behaviors were used for LDSC. Summary statistics for life-

time cannabis use were generated from self-report measures of 

whether a participant had ever used cannabis during their life-

time from a sample comprised of both the UK biobank and the 

International Cannabis Consortium (n = 162,082 [67]). Summary 

statistics for CUD were derived via the International Statistical 

Classification of Diseases and Related Health Problems, 10th re-

vision diagnosis of CUD [95] reflecting a problematic and per-

sistent use of cannabis and were derived from the deCODE 

cohort based in Iceland (5,501 cases and 301,041 controls) [71].

Covariates

We included known correlates of cannabis use and sleep 

including age [96, 97], sex [98–100], depression [101–103], and 

current alcohol and tobacco use [104–107] as covariates in all 

regression models. Current alcohol and tobacco use were meas-

ured using the number of days that tobacco (mean  =  33.89, 

SD  =  42.23) and alcohol (mean  =  59.61, SD  =  80.32) were used 

in the past 180 days. Past 180-day tobacco use was categorized 

as 0 days (n = 126), 1–10 days (n = 187), 11–40 days (n = 233), and 

more than 40 days (n = 214). Past 180-day alcohol use was cat-

egorized as 0 days (n = 368), 1–100 days (n = 158), and more than 

100 days (n = 234). Depression symptoms were assessed using 

the Center for Epidemiological Studies-Depression (CES-D) scale 

[108] with the caveat of the sleep disturbance question being 

removed due to its direct overlap with our sleep PRS measure 

(mean = 27.76, SD = 9.29). All regression models also included the 

first 10 ancestral principal components (PCs 1–10) generated in 

PLINK as covariates to account for population stratification as is 

common in genetic and PRS analysis [109, 110].

Statistical analysis

Genetic correlations via LDSC

We used LDSC [111] to calculate genetic correlations between 

traits. Summary statistics were filtered by INFO > 0.90 and MAF 

> 0.01. Strand ambiguous SNPs, SNPs with duplicated rs num-

bers, multi-allelic variants, and insertion/deletions were all re-

moved. SNPs with low Ns (as determined by the LDSC program) 

were also removed when sample sizes were available. Alleles 

were merged with the Hap Map 3 [112] reference panel, with 

the major histone complex removed. The LD scores and beta 

weights used were pre-computed from 1,000 Genomes European 

GWAS data included in the LDSC download.

LDSC is a computationally efficient method that regresses 

chi-square statistics from GWAS on LD scores of the trait of 

interest [111]. LD scores per SNP are the sum of the variance 

explained by LD with other SNPs [113]. Genetic correlations 

were calculated using overlapping SNPs from filtered summary 

statistic files. Genetic correlations also account for population 

stratification and are not confounded by overlapping samples.

Polygenic risk regression analysis

All regression analyses were conducted in R version 3.5.1 [114]. 

Linear and logistic regression models were used to test the associ-

ation between sleep trait PRS and cannabis use behaviors including 

the previously mentioned covariates of age, sex, depression symp-

toms, past 180-day alcohol and tobacco use, and ancestral principal 

components (PCs 1–10). In terms of the steps of our analyses, we first 

used LDSC to estimate potential genetic correlations between sleep 

and cannabis GWAS summary statistics. Second, we ran pheno-

typic regression models between our sleep measures and cannabis 
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behaviors in our target data to establish associations of sleep 

deficits and cannabis behaviors amongst our target sample. Third, 

we ran regression models between our sleep PRS and sleep traits in 

our discovery sample to confirm that the sleep PRS predicted sleep 

constructs in our target data. Lastly, we ran regression models to see 

how sleep PRS predict cannabis behaviors. For all series of regres-

sions models involving PRS, we ran two sets of models: (1) with just 

age, sex, and PCs 1–10 as covariates and (2) with the prior covariates 

and the addition of current depression symptoms and past 180-day 

alcohol and tobacco use. We utilized this two-model approach to 

(1) look at the associations between sleep PRS and cannabis factors 

controlling for both basic covariates and more complex covariates 

and (2) determine if the effects seen in our final models (including 

all covariates) were driven by the more maladaptive covariates (de-

pression and past 180-day substance use).

Results

Genetic correlations using LDSC

We first used LDSC to look at potential genetic correlations between 

cannabis and sleep traits using the largest GWAS to date for each 

trait. Table 1 displays the LDSC analysis between sleep traits and 

cannabis use traits using large scale GWAS. We found significant 

positive genetic correlations between any lifetime cannabis use and 

an eveningness chronotype (rG = 0.24; 95% CI = 0.18,0.30; p = < 0.001). 

We also found significant genetic correlations between CUD and 

both short sleep duration (rG = 0.23; 95% CI = 0.03,0.43; p = 0.017) and 

insomnia (rG = 0.20; 95% CI = 0.02,0.38; p = 0.020). Figure 1 displays 

the genetic correlations between cannabis and sleep phenotypes 

using LDSC (error bars are 95% confidence intervals).

Sleep traits predicting cannabis in target data

Table 2 displays regression outputs of our target data sleep traits 

predicting cannabis use behaviors controlling for sex, age, de-

pression, and past 180-day alcohol and tobacco use. Short sleep 

duration on the weekday significantly predicted earlier age of 

first cannabis use (β  =  −0.06; 95% CI  =  −0.10,−0.02; p  =  0.004). 

Short sleep duration on the weekend significantly predicted 

lifetime cannabis use (β  =  0.70; 95% CI  =  0.12,1.32; p  =  0.022), 

increased number of lifetime cannabis uses (β  =  0.24; 95% 

CI  =  0.08,0.40; p  =  0.001), and earlier age of first cannabis use 

(β = −0.06; 95% CI = −0.11,−0.02; p = 0.006). How often one felt 

tired or low on energy during the day significantly predicted 

early age of first cannabis use (β = −0.14; 95% CI = −0.22,−0.05; 

p = 0.001) and increased lifetime CUD symptom count (β = 0.11; 

95% CI = 0.02,0.19; p = 0.010). How often one takes a nap during 

the daytime predicted earlier age of first cannabis use (β = −0.12; 

95% CI = −0.20,−0.03; p = 0.001).

Sleep PRS predicting sleep traits

Table 3 displays the regression betas between the sleep PRS and 

our sleep variables in our target data controlling for age, sex, 

and PCs 1–10. We converted the original coefficients for the PRS 

regressions from log odds ratios to odds ratios for clearer inter-

pretation, thus the coefficients for the PRS regressions can be 

interpreted as a summation of odds ratio weighted genotypes of 

the trait that it represents. A significant association greater than 

1 between a PRS and an outcome measure implies a liability 

such that a genetically determined unit log-odds increase in PRS 

is positively associated with a liability for the outcome measure. 

A significant association less than 1 between a PRS and an out-

come measure implies a liability such that a genetically deter-

mined unit log-odds increase in PRS is negatively associated 

with a liability for the outcome measure (in the reverse direc-

tion or an association with the reference group). We found evi-

dence of significant associations between the PRS for short sleep 

duration and numerous sleep factors including short weekday 

sleep duration (OR  =  1.37; 95% CI  =  1.16,1.64; p  <  0.001), short 

weekend sleep duration (OR = 1.43; 95% CI = 1.15,1.77; p = 0.001), 

and frequency of taking naps during the day (OR  =  1.10; 95% 

CI = 1.04,0.17; p = 0.002). Insomnia PRS was significantly asso-

ciated with short sleep duration on the weekday (OR  =  1.20; 

95% CI = 1.02,1.42; p = 0.031). There were no significant associ-

ations between the eveningness chronotype PRS and any of our 

sleep measures. Table 4 displays regression betas for the sleep 

PRS predicting sleep outcomes/traits in our target data in our 

full models controlling for age, sex, PCs 1–10, current depres-

sion, and past 180-day alcohol and tobacco use. Short sleep 

PRS was significantly predicted short sleep on the weekday 

(OR  =  1.38; 95% CI  =  1.16,1.66; p  <  0.001), short sleep on the 

weekend (OR = 1.52; 95% CI = 1.22,1.90; p < 0.001) and how often 

one takes naps during the day (OR  =  1.10; 95% CI  =  1.04,1.17; 

p = 0.001). Insomnia PRS significantly predicted how short sleep 

on the weekday (OR  =  1.22; 95% CI  =  1.03,1.45; p  =  0.024). The 

eveningness chronotype PRS did not significantly predict any 

sleep variables in our target data.

Sleep PRS predicting cannabis traits

Table 5 displays the regression betas between the sleep PRS and 

cannabis behaviors in our target data controlling for age, sex, 

and PCs 1–10. The insomnia PRS significantly predicted earlier 

age of first cannabis use (OR = 0.91; 95% CI = 0.84,0.99; p = 0.023) 

and increased lifetime CUD symptom count (OR  =  1.09; 95% 

Table 1. Genetic correlations and 95% confidence intervals between 

sleep and cannabis phenotypes using large scale GWAS

Lifetime cannabis use  

(No lifetime cannabis 

use as the reference 

group)

CUD  

(No CUD as the 

reference group)

Short sleep duration 

(<7 h)

(7–8 h sleep duration 

as the reference 

group)

−0.05 [−0.11,0.01] 0.23* [0.03,0.43]

Eveningness chronotype

(Morningness chronotype  

as the reference group)

0.24* [0.18,0.30] 0.16# [−0.02,0.34]

Insomnia 

(never/rare insomnia 

symptoms as the 

reference group)

0.01 [−0.05,0.07] 0.20* [0.02,0.38]

Genetic correlations between cannabis and sleep phenotypes were calculated 

using LD score regression.

Bold values represent *p < 0.05.
#Italic values represent p = 0.06.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/4
4
/3

/z
s
a
a
1
8
8
/5

9
0
6
2
0
4
 b

y
 g

u
e
s
t o

n
 2

0
 S

e
p
te

m
b
e
r 2

0
2
2



6 | SLEEPJ, 2021, Vol. 44, No. 3

CI = 1.02,1.17; p = 0.019). Eveningness chronotype significantly 

predicted lifetime cannabis use (OR = 1.21; 95% CI = 1.01,1.45; 

p = 0.042). Table 6 displays the regression betas for the sleep PRS 

predicting cannabis use measures in our target data controlling 

for age, sex, PCS 1–10, current depression, and past 180-day al-

cohol and tobacco use. The insomnia PRS significantly predicted 

earlier age of first cannabis use (OR = 0.92; 95% CI = 0.85,0.99; 

p = 0.036) and increased lifetime CUD symptom count (OR = 1.09; 

Table 2. Regression betas and 95% confidence intervals of sleep traits predicting cannabis use behaviors amongst a high-risk and twin/family 

community-based sample controlling for sex, age, depression, and past 180-day substance using both linear and logistic regression

Sleep trait

Lifetime cannabis use

(No lifetime cannabis use 

as the reference group)

Number 

of lifetime 

uses

Age of first 

cannabis use

Past 180-day 

cannabis 

use

CUD 

symptom 

count

How often do you feel tired or sleepy when you 

get up in the morning?

0.02  

[−0.19,0.23]

0.03  

[−0.14,0.19]

−0.03  

[−0.12,0.05]

−0.06#  

[−0.13,0.01]

0.06#  

[−0.01,0.14]

How often do you feel tired or just low in energy 

during the day?

0.14  

[−0.09,0.37]

0.17#  

[−0.01,0.36]

−0.14*  

[−0.22, −0.05]

0.00  

[−0.08,0.08]

0.11*  

[0.02,0.19]

How often do you take a nap during the  

daytime?

0.15  

[−0.11,0.42]

0.18#  

[−0.03,0.38]

−0.12*  

[−0.20, −0.03]

0.08#  

[−0.01,0.16]

0.03  

[−0.05,0.12]

Short sleep duration on the weekday (<7 h) 

(7–8 h sleep duration as the reference group)

0.07  

[−0.38,0.54]

0.10  

[−0.16,0.45]

−0.06**  

[−0.10, −0.02]

−0.03  

[−0.18,0.12]

0.06  

[−0.10,0.22]

Short sleep duration on the weekend (<7 h)  

(7–8 h sleep duration as the reference group)

0.70*  

[0.12,1.32]

0.24**  

[0.08,0.40]

−0.06**  

[−0.11, −0.02]

0.16#  

[−0.02,0.33]

0.11  

[−0.6,0.30]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer,” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.06–0.09.

Figure 1. Genetic correlations between cannabis and sleep phenotypes. Genetic correlations were calculated with LDSC. Error bars are 95% confidence intervals.
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95% CI = 1.02,1.17; p = 0.012). Both the short sleep duration and 

eveningness chronotype PRS did not significantly predict any of 

our cannabis measures.

Discussion

We set out to examine the potential shared genetic liability 

of sleep deficits and cannabis use behaviors using multiple 

genomic methods. We found significant positive genetic cor-

relations between lifetime cannabis use and an  eveningness 

chronotype as well as between CUD and both short sleep dur-

ation and insomnia. Additionally, we found that an insomnia 

PRS generated from a large scale sleep GWAS predicted earlier 

age of first cannabis use and increased number of lifetime CUD 

symptoms controlling for sex, age, PCs 1–10, current depres-

sion, and past 180-day alcohol and tobacco, suggesting that the 

genetic risk attributed to insomnia can predict several cannabis 

use behaviors. This study presents the first genomic-based evi-

dence (using PRS and LDSC) of shared genetic influence for can-

nabis use behaviors with both sleep traits and chronotype. The 

direction of these correlations and regressions implies a shared 

genetic relationship between increased cannabis use behaviors 

and both sleep deficits and an eveningness chronotype.

Our LD score derived genetic correlations are the first such 

report of a genetic relationship between sleep deficits and can-

nabis use behaviors, and are similar to prior studies that have 

shown genetic associations of sleep deficits and other substance 

use behaviors such as alcohol and tobacco [55–57]. These results 

and analyses imply that there is a positive genetic correlation 

between sleep deficits (short sleep duration, insomnia, and an 

eveningness chronotype) and lifetime cannabis use/CUD, such 

that the genetic influences on cannabis use also have an influ-

ence on sleep deficits or vice versa. While a prior twin study 

Table 3. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting sleep factors amongst a high-risk and twin/family community-

based sample controlling for age, sex, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  

(7–8 h sleep duration as the 

reference group)

Eveningness chronotype PRS  

(Morningness chronotype as 

the reference group)

Insomnia PRS  

(Never/rare 

insomnia symptoms 

as the reference 

group)

How often do you feel tired or sleepy when 

you get up in the morning?

1.01 [0.94,1.10] 0.99 [0.92,1.06] 1.03 [0.96,1.11]

How often do you feel tired or just low in 

energy during the day?

1.03 [0.96,1.10] 1.04 [0.97,1.11] 1.05 [0.99,1.13]

How often do you take a nap during the 

daytime?

1.10** [1.04,1.17] 0.97 [0.92,1.03] 1.04 [0.98,1.09]

Short sleep duration on the weekday (<7 h)  

(7–8 h sleep duration as the reference group)

1.37** [1.16,1.64] 1.02 [0.86,1.19] 1.20* [1.02,1.42]

Short sleep duration on the weekend (<7 h)  

(7–8 h sleep duration as the reference group)

1.43** [1.15,1.77] 1.10 [0.91,1.33] 1.05 [0.86,1.27]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.

Table 4. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting sleep factors amongst a high-risk and twin/family community-

based sample controlling for sex, age, depression, past 180-day substance use, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  

(7–8 h sleep duration as the 

reference group)

Eveningness chronotype PRS  

(Morningness chronotype as 

the reference group)

Insomnia PRS  

(Never/rare 

insomnia symptoms 

as the reference 

group)

How often do you feel tired or sleepy when 

you get up in the morning?

1.02 [0.95,1.10] 0.99 [0.92,1.06] 1.04 [0.97,1.12]

How often do you feel tired or just low in 

energy during the day?

1.03 [0.97,1.11] 1.05 [0.99,1.12] 1.06# [0.99,1.13]

How often do you take a nap during the 

daytime?

1.10** [1.04,1.17] 0.69 [0.92,1.03] 1.04 [0.98,1.10]

Short sleep on the weekday (<7 h)  

(7–8 h sleep duration as the reference group)

1.38** [1.16,1.66] 1.03 [0.87,1.22] 1.22* [1.03,1.45]

Short sleep on the weekend (<7 h)  

(7–8 h sleep duration as the reference group)

1.52** [1.22,1.90] 1.09 [0.89,1.32] 1.06 [0.87,1.30]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.07.
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found a genetic correlation between eveningness chronotype 

and both increased alcohol quantity and binge drinking [52], to 

our knowledge this is the first report of chronotype being genet-

ically correlated with cannabis use. These results would imply 

that the genetic influences for being an “evening type” person 

also have an influence on lifetime cannabis use. Additionally, 

our PRS analysis findings present the first report of genetic risk 

for a sleep behavior predicting a substance use behavior, sug-

gesting that the genetic risk for insomnia is associated with 

cannabis use behaviors such as earlier age of first cannabis use 

and increased number of lifetime CUD symptoms.

Our sleep duration PRS was validated on phenotypes of sleep 

behaviors in our target sample. Specifically, our short sleep 

duration PRS predicted short sleep duration on the weekday/

weekend and how often one takes naps during the daytime. The 

insomnia PRS predicted short sleep duration on the weekday 

and was trending in its association with how often one feels 

tired or low in energy during the day. Unfortunately, our target 

sample did not have a direct measure of insomnia (which was 

measured in the GWAS as have trouble falling asleep at night 

or waking up in the middle of the night) nor did our target data 

sleep trait measures include questions regarding trouble falling 

asleep or waking up at night. Furthermore, the insomnia GWAS 

phenotype was defined as severe insomnia, excluding those who 

had insomnia symptoms “sometimes” and only including those 

with “usual/always” insomnia symptoms. This exclusion could 

have led the PRS to predict only extreme cases and this could 

have influenced the potential variance explained in our regres-

sion analysis regarding the sleep outcomes. The eveningness 

chorotype PRS did not predict any of the sleep measures in our 

target sample. Similar to our insomnia PRS, our target sample 

did not have a direct measure of chronotype, and the only 

chronotype-like measure was restricted to a question regarding 

how often one feels tired or sleepy in the morning, which dif-

fered from the morning person/night person question of the 

chronotype GWAS. This could explain the lack of significant re-

lationships between the eveningness chronotype PRS and the 

sleep outcomes in our target data

It is worth noting that we included cannabis measures from 

differential time points with the goal of not only analyzing the 

genetic relationship between sleep and various cannabis behav-

iors across life, but also to look at the phenotypic associations of 

early cannabis use and later sleep in our target data. We found 

that several measures of recent sleep characteristics were asso-

ciated with earlier cannabis use measures in our target data; for 

example, short sleep duration on the weekend was associated 

with earlier age of first cannabis use as well as increased number 

of lifetime cannabis uses, and that short sleep duration on the 

weekday, how often one feels tired or low in energy during the 

day, and how often one takes a nap during the daytime were as-

sociated with earlier age of first cannabis use. Additionally, we 

found that increased lifetime CUD symptom count was associ-

ated with how often one feels tired or low in energy during the 

day. These results support prior findings of potentially earlier or 

Table 6. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting cannabis behaviors amongst a high-risk and twin/family 

community-based sample controlling for sex, age, depression, past 180-day substance use, and ancestral principal components (PCs 1–10)

Cannabis trait

Short sleep duration (<7 h) 

PRS  

(7–8 h sleep duration as the 

reference group)

Eveningness chronotype PRS  

(Morningness chronotype as 

the reference group)

Insomnia PRS  

(Never/rare insomnia symptoms as 

the reference group)

Lifetime cannabis use  

(No lifetime cannabis use as the 

reference group)

1.02 [−0.19,0.23] 1.19#[0.97,1.46] 1.17 [0.95,1.44]

Number of lifetime uses 0.99 [0.92,1.05] 1.04 [0.98,1.11] 1.04 [0.98,1.11]

Age of first cannabis use 0.96 [0.89,1.04] 0.99 [0.91,1.07] 0.92* [0.85,0.99]

Past 180-day cannabis use 1.02 [0.96,1.10] 1.03[0.96,1.10] 1.12 [0.95,1.09]

CUD symptom count 1.01 [0.94,1.09] 1.05 [0.98,1.012] 1.09*[1.02,1.17]

Bold values represent *p < 0.05.

#Italic values represent p = 0.09.

Table 5. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting cannabis behaviors amongst a high-risk and twin/family 

community-based sample controlling for sex, age, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  

(7–8 h sleep duration as the 

reference group)

Eveningness chronotype PRS  

(Morningness Chronotype as the 

reference group)

Insomnia PRS  

(Never/rare insomnia symptoms as 

the reference group)

Lifetime Cannabis Use  

(No lifetime cannabis use as 

the reference group)

1.04 [0.86,1.26] 1.21* [1.01,1.45] 1.09 [0.91,1.32]

Number of lifetime cannabis 

uses

0.99 [0.93,1.07] 1.07# [0.99,1.15] 1.04 [0.97,1.12]

Age of first cannabis use 0.95 [0.88,1.04] 0.97 [0.89,1.05] 0.91** [0.84,0.99]

Past 180-day cannabis use 1.02 [0.95,1.10] 1.05 [0.98,1.13] 1.02 [0.96,1.09]

CUD symptom count 1.02 [0.95,1.11] 1.07# [0.99,1.14] 1.09* [1.02,1.17]

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.07–0.09.
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preceding cannabis use behaviors being associated with later 

sleep factors.

While some of the results from our LDSC analysis align with 

our PRS analysis (e.g. findings of shared genetics between in-

somnia and CUD) several of our findings were not replicated 

between the two analyses. For instance, we found a genetic 

correlation between short sleep duration and CUD, yet our PRS 

for short sleep duration did not predict any cannabis behaviors. 

Additionally, we found a significant genetic association between 

an eveningness chronotype and lifetime cannabis use, yet the 

eveningness chronotype PRS did not significantly predict any 

cannabis behaviors in our full models (although there was a 

significant association between the eveningness chronotype 

PRS and lifetime cannabis use in our simple model but this as-

sociation was trending in the full model). Reasons for the lack 

of convergent results could include population differences be-

tween the GWAS and target data in terms of both environmental 

and genetic differences of the samples. Different locations of 

the samples will have different environmental influences that 

can influence phenotype expression and there are both racial 

and regional differences in terms of common and rare variants, 

minor allele frequencies, and linkage disequilibrium that can 

influence results and the variance explained [115]. Additionally, 

differences in the methodological aspects of the analyses (PRS 

vs LDSC) could be responsible. While both analyses focused on 

the effects across all available SNPs, LDSC looks at the overall 

direction of effect of all SNPs and PRS looks whether the genetic 

risk for a certain trait predicts a phenotype. Lastly, the differ-

ence in sample sizes between the two methods could explain 

the dissimilarities in results, provided the genetic correlations 

were between large-sample GWAS and were better powered 

than the PRS regression which has a much smaller sample size. 

Overall, our results imply shared genetics between cannabis use 

and sleep deficits, and the differences seen in the results may 

be due to population and methodological differences between 

these analyses.

Our findings complement a small collection of research fo-

cused on the genetics of cannabis use and sleep behaviors. Two 

prior studies by our group have used the classical twin design 

to show that shared genetics played a role in the etiology of the 

relationship between early cannabis use and shorter adult sleep 

duration, insomnia, and insomnia with short sleep [16, 23] and a 

recent study found clock gene polymorphisms that were signifi-

cant risk factors for cannabis addiction [58]. One possible explan-

ation for this genetic relationship could be that disturbances of 

circadian rhythm genes might interrupt the reward processing 

system, which could influence substance use [50, 51]. Another 

supported explanation could be that the endocannabinoid 

system is involved in the circadian sleep–wake cycle, such that 

endocannabinoids influence sleep behaviors and their levels 

can vary with the time of day and other circadian-related fac-

tors [47–49, 116]. Along these lines, several of the genes and gen-

etic pathways found to be significant in sleep-related variable 

GWAS [57, 59–62] have been associated with cannabis use and 

cannabinoid activity [63–66, 68, 69, 117–120]. Likewise, GWAS for 

lifetime cannabis use and CUD [66, 67, 70, 71] have found genes 

that have been linked to sleep behaviors and circadian rhythm 

[72–75, 121].

This study demonstrates a genetic relationship between 

both sleep factors and chronotype with cannabis use behaviors, 

implying shared genetic liability between these domains, specif-

ically common genetics between short sleep duration, insomnia, 

and an eveningness chronotype with increased cannabis use be-

haviors. Future studies should use more novel genetic methods 

to examine the exact mechanisms for this genetic relationship 

such as gene set enrichment pathway analysis [122]. While a re-

cent study has made causal inferences between these domains 

using Mendelian randomization [123], there are mechanisms 

both genetic and outside of genetics that could be responsible 

for the associations between these traits and future research 

should use methods that can make causal inferences like 

epigenome-wide association studies [124] and experimental-

based cannabis administration studies to analyze the relation-

ship between cannabis use and sleep deficits.

Limitation

There are several limitations to this study, which point to im-

portant lines of future research. First, our cannabis, sleep, and 

covariate variables in our target sample were self-report and 

could be prone to response bias or report error. Second, while 

both the short sleep duration and insomnia PRS were signifi-

cantly associated with sleep duration outcomes and other sleep 

behaviors, the eveningness chronotype PRS was not significantly 

associated with any of our target data sleep measures. The co-

hort study lacked a valid insomnia or chronotype measure to 

validate the usefulness of the respective evening chronotype 

and insomnia PRS measures. The inclusion of such measures 

would have ideally been associated with these PRS measures. 

Third, population differences in environmental factors between 

target and base data can influence the variance predicted in the 

models. Our GWAS data for our PRS was gathered from the UK 

in a cohort known for being older and overtly healthy [125]. Our 

target sample was from the US, younger, mostly male, and a com-

bination of community-based and high-risk subjects. Fourth, 

genetic differences due to the regional make-up our samples 

could influence the variance. While both our GWAS base and 

target data were from European ancestry, there could still be 

genetic differences between the samples that could have influ-

enced the predictive ability of the PRS to explain the variance of 

the outcomes. Fifth, we reported the effects of all SNPs (p < 1) in 

our results, and while using this threshold method captures the 

additive effect of additional SNPs often removed by the stringent 

threshold of genome-wide significance [92–94], it is also suscep-

tible to false positives or noise. Still, studies have shown that 

the whole-genome approach of using all SNPs captures more 

signal than it does noise and that this method can outperform 

PRS generated from using only top hits [126, 127]. Sixth, while 

LDSC is robust to population stratification/relatedness, there are 

limitations to consider such as biases in the estimates due to 

rare copy variants and capturing genetic variation tagged only 

by common SNPs [111]. Lastly, several of our genetic-based re-

sults regarding the relationship between cannabis use and sleep 

deficits were trending in significance (such as the eveningness 

chronotype PRS predicting lifetime cannabis use and the genetic 

correlation between eveningness chronotype and CUD) and it is 

possible that similar studies with considerably larger samples 

would yield clearer results.

Summary

Our findings are consistent with the theory that both sleep 

deficits (such as short sleep duration and insomnia) and 
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an  eveningness chronotype share genetic liability with can-

nabis use behaviors, and that this genetic relationship con-

tributes to the associations between sleep and cannabis. 

These results extend the current body of research focused on 

the relationship of sleep and cannabis behaviors to include 

the first instance of genomic evidence (LDSC and PRS pre-

diction) as well as the first evidence of a genetic relationship 

between an eveningness chronotype and cannabis use behav-

iors. Future studies should consider novel genomic methods 

to examine potential genes as well as specific genetic causal 

pathways for these relationships.
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