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a b s t r a c t

The widely used guidelines for sleep staging were developed for the visual inspection of electrophysi-

ological recordings by the human eye. As such, these rules reflect a limited range of features in these data

and are therefore restricted in accurately capturing the physiological changes associated with sleep. Here

we present a novel analysis framework that extensively characterizes sleep dynamics using over 7700

time-series features from the hctsa software. We used clustering to categorize sleep epochs based on the

similarity of their time-series features, without relying on established scoring conventions. The resulting

sleep structure overlapped substantially with that defined by visual scoring. However, we also observed

discrepancies between our approach and traditional scoring. This divergence principally stemmed from

the extensive characterization by hctsa features, which captured distinctive time-series properties within

the traditionally defined sleep stages that are overlooked with visual scoring. Lastly, we report time-

series features that are highly discriminative of stages. Our framework lays the groundwork for a

data-driven exploration of sleep sub-stages and has significant potential to identify new signatures of

sleep disorders and conscious sleep states.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Sleep is underpinned by a rich repertoire of biological processes.

Overnight polysomnography (PSG) combining electroencephalog-

raphy (EEG), electromyography (EMG) and electrooculography

(EOG) shows that concerted neurophysiological events occur

repeatedly across the night. The observation of cyclic patterns

suggests that the brain goes through several states during sleep,

each one being characterized by distinct patterns of underlying

neural activity. A set of rules for classifying these states was first

developed by Rechtschaffen and Kales [1]. The authors designed

these guidelines with awareness of their limitations. This scoring

system was originally proposed as a reference point to facilitate

comparisons of research findings among researchers and clinicians,

expecting that the guidelines would be updated as research and

technology evolved [2]. Despite their original intentions, these

guidelines are used to this day by the American Academy of Sleep

Medicine (AASM) and have undergone only a few updates. The

AASM visual scoring rules currently serve as the gold standard for

the assessment of sleep physiology and the diagnosis of sleep

disorders.

1.2. Visual inspection of PSG data

The AASM sleep scoring manual provides guidelines for
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categorizing sleep andwake states in five discrete stages (Wake, N1,

N2, N3, REM). These rules are based on the visual inspection of

neurophysiological signals. Sleep technicians typically examine

patterns of characteristic rhythms in the neural signals as well as

specific physiological events to classify 30-s segments of sleep. For

example, REM sleep is defined by the AASM as a stage of low

amplitude, mixed frequency activity accompanied by low chin

muscle tone and rapid eye movements. These rules, based on

visually recognizable markers, are easy to describe and to stan-

dardize across laboratories, playing a significant role in the devel-

opment of sleep research over the decades.

1.3. Arbitrariness of scoring guidelines

Because the scoring guidelines have undergone only minimal

revision since theywere established, theymostly reflect the state of

knowledge and practice from past decades [2]. A typical example is

the 30-s window rule, which was introduced at the time brain

signals were recorded on 30-cm wide polygraph pages moving at

1 cm/s [3]. Clearly, our current technology makes this obsolete and

known micro-states [4,5] cannot be captured with this time scale.

Regarding the PSG features that were selected for sleep scoring,

some of them were chosen based on their visibility to human eyes

in preprocessed time series, with minimal contribution from

modern data analysis methods. In fact, at the time the AASM sleep

scoring guidelines were published, 26 of the 29 visual scoring rules

were determined by consensus among human scorers and were

proposed without a complete validation of their biological rele-

vance to sleep [6,7]. For instance, the 75-mV amplitude criterion for

slow waves is arbitrary [6] and is not suited to the assessment of

sleep quality in older people, who often do not have delta oscilla-

tions this large [8,9]. Furthermore, some of the most distinctive

features specified by the AASM, such as sleep spindles in N2 or

rapid eye movements in REM, are neither specific nor necessary to

the scoring of the stage, which hinders a reliable and accurate

description of sleep data. The arbitrariness and incompleteness of

current scoring rules and analytic approaches is a known but un-

resolved limitation in the field of sleep research and medicine.

1.4. Inadequacy in characterizing sleep-stage transitions

One of the prominent problems that scorers often encounter

regards epochs that are ambiguous and cannot be dealt with using

the AASM criteria. Such ambiguities arise during sleep-stage tran-

sitions, where the underlying biological states presumably change

gradually. Hence, interscorer disagreement mainly occurs between

adjacent stages [10]. To cope with ambiguous epochs, the AASM

recommends taking into account information from the neighboring

epochs [11,12]. For example, a 30-s epoch with no characteristic

EEG rhythms or transient events is scored as N2 if the epoch prior to

or posterior to it shows sleep spindles. While this practice assumes

continuity in the underlying sleep physiology and its dynamics, it is

subject to highly variable criteria across scorers. Crucially, the

analysis of sleep-stage transitions has revealed crucial insights in

the diagnosis of several sleep disorders including narcolepsy

[13e15], chronic fatigue syndrome [16], and insomnia [17].

Furthermore, this ‘temporal smoothing’ process tends to underes-

timate transitional states such as N1, which is not clearly identifi-

able visually but is associated with various processes like mental

imagery [18] and memory processing [19]. The contextual infor-

mation rules, which are used to cope with the inability to visually

identify and verbalize distinctive features, are not suited to the

definition of sleep-stage transitions.

1.5. Limited characterization of sleep time series

Despite all these known issues, traditional sleep scoring con-

tinues to rely on visually identifiable features in PSG signals. While

raw EEG signals are noisy, non-stationary, and high dimensional,

the traditional guidelines supplement visually identifiable features

with only a few signal attributes, such as the dominant power in

certain frequency bands. Thus, current guidelines do not fully

capture the range of dynamical patterns that could underlie rele-

vant changes in sleep physiology. In addition to representing a

narrow range of signal properties, the visualization of certain fea-

tures is undermined following EEG data preprocessing. Filtering, for

example, makes it difficult for scorers to discern sleep spindles

among the dominant slow wave activity in N3 [20]. Similarly, cur-

rent guidelines for the referencing of EEG electrodes with mastoid

electrodes favor global, centro-frontal components and could mask

more local sleep features. Therefore, we might gain more under-

standing by characterizing sleep dynamics using the sophisticated

range of modern time-series analysis algorithms.

1.6. Purpose of this study

The goal of the present study is to categorize sleep in a data-

driven way, based on a wide range of their time-series properties.

To achieve this goal, we first apply a massive feature extraction tool

to sleep time series, using the highly comparative time-series

analysis approach implemented in the hctsa software package,

which contains a diverse set of over 7700 time-series features

[21,22]. hctsa encodes scientific algorithms for time-series analysis

in the form of features that each summarize a structural property of

a time series in the form of a real number. It includes methods that

were developed in and applied to a wide range of research areas,

including Fourier and wavelet transforms, entropy, self-correlation

and predictability, nonlinear time-series analysis, and fractal

scaling. This large set of analyses has never before been applied

systematically to PSG data.

Based on the results of these hctsa time-series analyses, we

sought to organize sleep (i.e., N1, N2, N3, REM and intra-sleep

wakefulness) independently of pre-defined scoring rules. To this

end, we approached sleep scoring in an unsupervised way by

clustering sleep time series based on the similarity of the dynamical

properties captured by hctsa. Furthermore, we analyzed the data on

an epoch-by-epoch basis to minimize subjective criteria related to

the incorporation of contextual information. By taking this data-

driven approach, which we refer to as feature-based clustering,

our aimwas not to replicate AASM visual scoring, but to go beyond

it (Fig. 1). Our approach tackles the following question: if the AASM

scoring guidelines did not exist today, how would we go about

using modern methods to define the structure of sleep? While our

approach draws on certain assumptions from the AASM (such as

the existence of 5 distinct sleep stages), our method proceeds

independently of the specific AASM guidelines for scoring/identi-

fying these stages and is a first step towards moving beyond con-

ventional sleep stages themselves.

We present our analyses in two parts. In the first part, we assess

the extent to which the feature-based clusters correspond with

visual (AASM) sleep scoring of the same epochs. In the second part,

we examine cases in which feature-based clusters disagree with

AASM labels to better understand what novel properties of sleep

our approach can reveal. We also assess the ability of individual

hctsa time-series features to distinguish AASM stages.
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2. Results

2.1. Part 1. Correspondence between feature-based clustering and

traditional sleep stage architecture

To objectively assess the correspondence between how sleep

epochs are organized using (i) time-series features and (ii) AASM

labels, we developed an automated procedure that combines un-

supervised clustering, cluster matching, and cross-validation

(Fig. 2; see Methods; Feature-based clustering). We applied hctsa

to 12 full-night PSG datasets, each containing a preprocessed EEG,

EOG, and EMG derivation. Through this process, the EEG, EOG and

EMG time series of each 30-s epoch is converted into a single vector

containing the output values produced by all hctsa features for this

epoch (Fig. 2a). The feature values which generated non-real

numbers or errors were filtered out and the remaining valid

values were normalized. After forming a balanced dataset (Fig. 2b

and c), we grouped 70% of the data (training set) into 5 clusters

based on their hctsa feature values (Fig. 2d). Using our sequential

maximum matching algorithm, we assigned each unlabeled

training cluster to one of the five AASM sleep stages (Fig. 2e). We

named the five training clusters C1, C2, C3, CR and CW, as those that

Fig. 1. Our feature-based clustering framework seeks to provide a better description of sleep. The present study introduces a sleep classification framework that represents a

first step towards expanding our understanding of sleep physiology. Our framework (right column) differs from the traditional AASM scoring method (left column) in three main

ways: the number of features extracted (first row), the classification method (second row) and the scoring of sleep-stage transitions (third row). A) The traditional AASM scoring

method is based on a limited number of visual time-series features, such as alpha activity, sleep spindles, K-complexes and sawtooth waves. B) To go beyond our understanding of

sleep, we need to broaden the characterization of sleep time series. We use highly comparative time-series analysis (hctsa) to extract a diverse set of properties using measures of

data distribution, correlation properties, model fitting and others. hctsa transforms each 30-s epoch into a single vector containing the output values produced by all hctsa features

for this epoch. C) The AASM scoring manual provides pre-defined rules for the classification of sleep stages. We illustrate the example with a N3 epoch, which is scored as such

when slow wave oscillations of >75 mV amplitude occupy more than 20% of the sleep epoch. Note that both the 75-mV criterion and the 30-s timescale are not based on any scientific

basis (see Introduction). D) Our framework approaches sleep scoring in an unsupervised way by clustering sleep time series based on the similarity of their properties captured by

hctsa. We used k-means clustering to organize sleep in five feature-based clusters. E) To deal with visually ambiguous epochs, which are mostly encountered in sleep-stage

transitions, human scorers are encouraged to use the surrounding epochs. This results in a temporal smoothing of the sleep structure. F) Unlike traditional scoring, our frame-

work scores each 30-s epoch in isolation, thus preserving the temporal structure of the data. Altogether, these three methodological components represent a first step towards a

novel data-driven understanding of sleep, which complements the traditional approach.
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Fig. 2. Computational steps in our unsupervised feature-based clustering approach. a) We applied hctsa on PSG data, which converted each 30-s epoch into a single vector

containing the output values produced by all hctsa features for this epoch. b) To equally represent each AASM stage, we formed a balanced dataset by random subsampling. c) We

randomly assigned 70% and 30% of the balanced dataset into a training and testing set, respectively. d) We used the feature values of the training set for k-means clustering (k ¼ 5).

Black ellipses depict clusters. Their centroids are depicted as large gray circles. Each small colored dot indicates the given AASM label, representing the vector of feature values from

one training epoch. e) Next, we mapped each unlabeled cluster onto one of the five AASM sleep stages based on the most frequently matched AASM label in each cluster using our

sequential maximum matching algorithm. We named the 5 clusters as CW, C1, C2, C3 and CR, which were matched with W, N1, N2, N3 and REM, respectively. f) After completion of

training, each test epoch was assigned to the nearest cluster (i.e., cross-validation). To assess the overlap between cluster decisions and the AASM labels, we computed the per-

centage of test epochs whose AASM label matches the cluster it was assigned to (e.g., N2 epoch assigned to C2). The entire procedure was iterated 100 times per dataset. See

Methods (Feature-based clustering) for details on each step of the procedure.
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most closely mapped onto N1, N2, N3, REM and wake, respectively.

Then, we assigned the remaining 30% data (testing set) based on

their distance to the training clusters (Fig. 2f). We used the pro-

portion of match between the AASM labels and the cluster labels of

the test data (cross-validation) through 100 iterations to assess the

correspondence between the two methods.

To visualize how the large number of hctsa time-series features

vary across a night of sleep, we show a color-coded feature matrix

representing the feature values for each 30-s EEG, EOG and EMG

time series from one subject over one night (Fig. 3). The matrix

displays the normalized feature values for 5946 valid features on

1014 epochs in chronological order. Below the matrix, we show the

hypnogram generated from the AASM labels supplied by consensus

between three trained scorers. We observe that the hypnogram

generally corresponds with patterns of feature values, notably for

the EEG and EOG. More specifically, notice that the short periods of

wake (e.g., during the 3rd hour; green arrows at the top) corre-

spond with narrow bands of feature values that contrast with

neighboring epochs of N2 sleep. This broad correspondence can be

explained by the apparition of high-amplitude hyper-synchronized

slowwaves at the transition fromwakefulness to deep sleep [11,12],

resulting in a sharp increase in the autocorrelation of the EEG

signal. The fact that many hctsa features reflect these wake-NREM

transitions could thus stem from their sensitivity to the signal

autocorrelation. As a result, the hctsa feature matrix broadly tracks

the sleep architecture described by visual sleep scoring. However,

we also note instances of potential discordances between the two

methods. For example, during the continuous REM period (marked

by a red bar at the top), multiple patterns of feature values are

identifiable. This hints at heterogeneity in time-series properties

within conventional sleep stages, which we examine in more detail

later.

2.2. Feature-based clusters substantially overlap with visual sleep

scoring

Towhat extent do feature-based clusters correspondwith AASM

sleep stages? Unlike traditional scoring, our framework organizes

sleep epochs without considering their temporal context. Further-

more, it is unclear what correlation structures in the feature space

would emerge from this specific type of data, which makes it

difficult to predict whether the application of uniformly-weighted

features will produce an AASM-like structure.

To quantify the degree of correspondence between the two

approaches, we computed the mean overlap between the two

classifications across datasets (Fig. 4a). While the highest overlap

was observed for N3 (77.4% of the N3 epochs were assigned to C3),

the lowest degree of agreement was obtained for N2 (only 43.1% of

the N2 epochs were attributed to C2). The majority of N2 mismatch

was due to the assignment into C3 (20.9%). We also note high off-

diagonal overlap between Wake, N1, and REM epochs (e.g., 27.6%

of N1 assigned to CR, 26.6% of Wake to C1, 21.3% of REM to C1).

Overall, this level of overlap demonstrates the ability of our stage

mapping algorithm to attribute each cluster to the corresponding

AASM stage without a priori information on how sleep stages are

defined.

To illustrate what each data-driven cluster looks like, we show

exemplar EEG time series located near the cluster centers from one

dataset (Fig. 4bef). Feature-based clusters exhibit visual features

that are descriptive of AASM sleep stages (e.g., CW and C1 are

characterized by high alpha activity, C2 by the presence of K-

complexes, C3 by slow-wave activity). This analysis demonstrates

that our data-driven approach revealsdwithout any use of AASM

labelsda cluster structure in the data, and this structure reflects the

key visual aspects that characterizes traditional scoring.

2.3. Part 2. Revealing the source of divergence between feature-

based clustering and traditional scoring

2.3.1. Contextual information does not fully explain the observed

discrepancies

While the feature-based clusters and traditional sleep-stage

labels largely overlap, our novel framework also revealed inter-

esting divergences. Our visual inspection of the epochs with mis-

matched labels suggested that instances of disagreement may stem

from the use of contextual information in AASM scoring. While

human scorers are encouraged to use neighboring epochs to assist

in labeling ambiguous epochs, our algorithm analyzes each indi-

vidual epoch in isolation.

To test the possibility that the observed divergences are due to

the use of contextual information in human scoring, we recruited 4

expert sleep scorers (‘No-context scorers’) and asked them to score

a subset of the epochs from the same data and under the same

conditions as our feature-based clustering approach. Specifically,

we first equated the number of epochs across sleep stages, then

presented each epoch in isolation and in random order (see

Methods; Visual scoring task). Under these settings, no-context

scorers agreed with the trained scorers for 67.5% of the epochs.

This is lower than the ~80% interscorer agreement obtained in sleep

studies [10], implying that contextual information may explain

~12.5% of the disagreement. Importantly, no-context scorers agreed

with feature-based clustering in 41.1% of cases, similar to the level

of agreement with trained scorers (45.2%), suggesting that the use

of contextual information does not fully explain the disagreement

between feature-based clusters and the implementation of AASM

scoring rules.

2.4. Feature-based clustering points to potential sub-stages within

AASM sleep stages

To explore the source of discrepancy other than contextual in-

formation, we show, in Fig. 5, the same feature matrix plotted in

Fig. 3 but with epochs grouped according to the AASM labels (see

bottom annotations). Additionally, within each AASM label, we

reordered epochs according to the cluster assigned by the algo-

rithm (CW, C1, C2, C3, and CR; see colorbar). Fig. 5 shows that,

within each AASM stage, epochs assigned to different clusters

coincide with visually distinct patterns of EEG and EOG feature

values (less so for EMG). This observation is most striking within

N2. Feature-based clustering assigned N2 epochs to five different

clusters, each displaying distinct patterns in feature values. Fig. 6

shows a visualization of the N2 epochs (same data as in Figs. 3

and 4) across subjects using t-distributed stochastic neighbor

embedding (t-SNE; seeMethods; t-SNE). In 10 out of 12 subjects, we

observe a heterogeneous structure (marked by dotted lines) within

N2. In other words, according to our feature-based clustering

approach, N2 is far from being a uniform state.

We conclude that the divergence between feature-based clus-

tering and AASM scoring is driven not just by the lack of contextual

information in our approach compared to traditional scoring, but

also by the detection of neurophysiological heterogeneity within

each AASM stage. The heterogeneity of N2 and other AASM stages

has been reported in previous studies and precise characterizations

in sub-stages have been proposed (see Discussion). This heteroge-

neous structure might reflect physiologically distinct periods of

sleep that are overlooked with traditional scoring.

2.5. Identification of the most discriminative features

Lastly, we aimed to illustrate how hctsa can uncover new types

of time-series features for the classification of sleep data. While
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outside the scope of the goal of inferring the structure of sleep time

series using unsupervised methods, we aimed to demonstrate the

potential application of time-series feature extraction for tackling

supervised learning settings for sleep analysis problems. We

demonstrate the approach by aiming to deduce the most

discriminative time-series features for each pair of AASM sleep

stages (see Supplementary Text 1 for more details on the methods

and results). Our approach identified measures that recapitulated

some of the methods used in the sleep-scoring literature, and

flagged novel features. For classifying Wake/N2, Wake/N3, N1/N3,

Fig. 3. Time-series properties broadly track visual sleep scoring. The matrix is derived from applying 5946 hctsa features to one full-night dataset (ID: 1800439). Each column

corresponds to one of the 1014 30-s epochs recorded by an EEG, EOG, and EMG (top, middle, and bottom, respectively). The x-axis shows time (in hours) from the first non-wake

epoch. Each row corresponds to one hctsa feature. To help interpretation, we order features in EEG by their correlation-based similarity using average linkage clustering [21,22]. We

order features in EOG and EMG using the same ordering as in EEG. Each pixel encodes a normalized feature value from 0 to 1 (see colorbar below the matrix). Below the feature

matrix, we show the hypnogram (the labels derived by consensus between three trained scorers in accordance with the AASM visual scoring guidelines). The hypnogram is broadly

consistent with different patterns in the feature matrix (notably for the EEG and EOG matrices).
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N1/REM, N2/REM, and N3/REM, the most discriminative time-

series features measured spectral properties, such as Fourier

spectral analysis, power in some frequency bands, and logarithmic

power. The slope of the linear fit (i.e., scaling exponent) of the

power spectrum was the most discriminative feature across all

pairs of stages (83.2%; percentage accuracy of this single feature

averaged across all pairs and across 100 iterations). This feature

could distinguish stages associated with poor classification per-

formance using classical EEG properties, such as N2/REM (70.3%)

and N1/REM (68.0%). The most discriminative features also

included a range of novel measures that are not widely used to

discriminate between AASM sleep stages. This includes distribu-

tional moments (e.g., ninth-order moment; 83% for N1/N2), outlier

distribution (e.g., fit to beta distribution; 71% for Wake/N1) and

variance (e.g., mean absolute deviation; 87% for N2/N3; Fig. S1).

Incorporating these novel features into automated sleep scoring

could improve performance while providing additional insights

into sleep physiology (see Discussion).

3. Discussion

We present a sleep time-series analysis framework that goes

beyond traditional visual sleep scoring. To do so, we 1) leverage

over 7700 features to comprehensively characterize sleep time

series, 2) cluster time series in an unsupervised way, rather than

classifying them according to the AASM guidelines, and 3) analyze

Fig. 4. Overlap between the AASM visual scoring and our feature-based clustering across stages. A) Overlap matrix between our feature-based clustering results on the test data

(columns: CW, C1, C2, C3, and CR) and the AASM labels (rows: Wake, N1, N2, N3, and REM). The number in each cell represents the mean overlap (in %) across the 12 datasets. B) CW.

C) C1. D) C2. E) C3. F) CR. For each cluster, we selected 10 EEG time series (from one dataset; ID: 1800005) that were closest to the cluster centroids. Each line corresponds to the EEG

time-series at electrode C3 for one of these 30-s-long epochs.
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the data without assuming the temporal context to resolve ambi-

guities arising in the scoring of sleep-stage transitions.

In Part 1, we showed that the sleep structure revealed by our

approach substantially overlapped with the traditional AASM sleep

stages defined by visual scoring (Fig. 3), suggesting that both ap-

proaches captured a genuine physiological structure of sleep.

However, we also observed important points of divergence be-

tween the two methods (Fig. 4a). In Part 2, we examined potential

sources of the divergence. While it is partially explained by

contextual information, it is also reflected by the fact that hctsa

features depicted heterogeneity in time-series properties within

each of the AASM sleep stages (Figs. 5 and 6). Finally, we identified

discriminative properties of high-performing features. In the rest of

the Discussion, we identify various directions our framework can

take to pick up low-hanging fruits in its applications.

3.1. Towards establishing a general and objective ground truth of

sleep stages

The present framework represents a complementary approach

to the existing method aiming to provide a more accurate and

objective definition of the sleep structure. In line with past fMRI

[23] and EEG [24] studies revealing latent states within traditional

stages by means of machine-learning algorithms, our novel data-

Fig. 5. Feature matrix points to heterogeneity within each AASM sleep stage. The same 1014 epochs in Fig. 3 are plotted (see legend of Fig. 3), except for a different ordering

across the x-axis. From the left to right, we organized columns in five matrices according to the original AASM labels (Wake, N1, N2, N3, and REM). Within each AASM label, we

further ordered columns according to feature-based cluster assignment (CW, C1, C2, C3, and CR; see colorbar and legend). Disagreements between the AASM labels and feature-

based clustering clearly correspond to distinct patterns in the feature matrix.
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driven approach will expand our understanding of sleep physi-

ology, which has been difficult to achieve with traditional methods.

As an estimate of what the traditional method would tell us, we

used AASM standards and examined how our framework differ-

ently characterized and organized sleep data. Although the AASM

visual scoring is the gold standard, we do not consider this to be the

ground truth of sleep physiology. As we argued in the Introduction,

conventional scoring provides an inadequate description of the

physiological changes that occur during sleep. Given the lack of

ground truth, our study raises the question of what a better sleep

classification approach would involve and, more specifically, what

“better”means in this context. Our data-driven approach, equipped

with a large number of features, offers the possibility to fine-tune a

wide range of parameters. Depending on the purpose of the study,

therefore, these parameters can be adjusted. This includes, for

example, selecting features that are the most sensitive to a specific

sleep stage, sleep function or sleep pathology. In this regard, our

approach has significant potential to contribute to a more complete

understanding of the nature of sleep in a flexible manner.

One interesting future research direction is to apply our

framework to data from the same subjects across multiple nights.

By dividing the data into training and test nights, we can apply

Fig. 6. Heterogeneity in time-series properties within N2. t-SNE two-dimensional projection of N2 time series (EEG, EOG, and EMG) for each of 12 datasets. Units are arbitrary.

The title refers to the dataset index. Cluster assignments (indicated by the color of each dot) were obtained separately for each dataset as in Fig. 5 (CW, C1, C2, C3, CR; see legend).

For 10 of the 12 datasets, we observe a heterogeneous structure within the N2 stage, as illustrated by black dotted lines. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)
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similar cross-validations as we established in our framework

(Fig. 2). Such studies would be an ideal way to estimate the sensi-

tivity and specificity of our framework, providing a benchmark for

further studies.

The confirmation of the stability and precision of our frame-

work, in comparison with the traditional AASM scoring approach,

can also be tested across subjects. An initial assessment of the

generalizability of feature-based clusters suggests that similar data-

driven structures are observed across subjects (see Fig. S2). These

preliminary findings support the idea that these clusters reflect a

physiologically relevant structure that generalizes across subjects.

Follow-up investigations using a larger sampling size are needed to

provide further insights into between-subject similarities in sleep

structure. Such a generalization study should also include pop-

ulations that are more heterogeneous than the cohort we used (e.g.,

wider age range). How much individual variability will our

framework reveal on its application to massive healthy population

data? Can it explain variance in mental and physiological differ-

ences in a more sensitive and specific way than traditional ap-

proaches? Our framework provides a first step towards answering

these questions.

3.2. Refining traditional sleep stages

In Part 2, we took an initial step towards the discovery of sub-

stages that are overlooked with the traditional scoring. We

focused on N2 because this stage had the lowest level of agreement

between our approach and AASM scoring (43.1%; Fig. 4a) and

represented the largest amount of the data available in each dataset

(Fig. 5). t-SNE projection exhibited heterogeneity within N2 in a

visually striking way and in the majority of datasets (Fig. 6).

Variability within N2 was previously reported. Sleep spindle

activity does not occur uniformly within N2, but their occurrence is

modulated across and within sleep cycles [25] and is dependent on

local temporal context [26], which may reflect fluctuations in sleep

depth within N2 [27]. Along this line, based on autonomic and

hormonal activity, the division of N2 has been proposed as a quiet

type (before the transition into N3) and an active type (preceding

REM sleep) [28]. From a physiological perspective, it is not sur-

prising if N2, which occupies as much as 50% of total sleep [29], is

not physiologically homogeneous.

While we focused on N2 in Fig. 6, we believe that this obser-

vation is not restricted to this stage. The featurematrix presented in

Fig. 5 suggests variability in time-series properties within every

AASM sleep stage. To the extent that these variations reflect un-

derlying changes of sleep, our findings indicate that sleep staging

can be refined to unveil more subtle sleep-stage distinctions. These

distinctions may be defined within AASM sleep stages, similar to

how REM sleep can be decomposed into a phasic and tonic period

[30], each of which is associated with different physiological and

cognitive processes [31]. Sub-stages may also not necessarily align

with coarse sleep stages but instead emerge as transitional stages,

similar to how N1 briefly appears between the wake state and N2.

The delineation of sub-stages can also be achieved using much

shorter time scales than the traditional 30-s time window. As the

present study sought to compare the structure emerging from

feature-based clustering with that of traditional scoring, we

adopted the 30-s window as the unit of our analysis. A previous

study showed that the AASM scoring can be successfully replicated

using time windows down to 5 s [32]. Our framework is highly

flexible too and can be applied at shorter time scales, which is likely

to be optimal for the reliable identification of sub-stages, as

demonstrated for example within N1 [4]. The temporal refinement

is also most suited to the incorporation of short-lived events, such

as sleep spindles or K-complexes, whichmay be associatedwith the

ability to report dream content [33,34]. Application of our auto-

mated framework therefore promises highly productive areas of

future research by refining the temporal scales of the analysis.

Our approach is also scalable in space. In fact, the EEG tech-

nology (as well as other physiological variables, other than EOG and

EMG) has progressed tremendously in quality and quantity since

the time of the original development of the AASM guidelines.

Especially, the high quality and high-density EEG (60 to 256

channels) are more and more adopted in sleep research in both

healthy and clinical populations. Higher spatial resolution in EEG

has led to discoveries that have reshaped our conceptualization of

sleep physiology, with the characterization of NREM slow waves as

traveling waves [35], the identification of two types of NREM slow

waves [36], the presence of slow waves in REM sleep [37] and even

in wakefulness [38], or the identification of inter-hemispheric dif-

ferences in slow wave activity [39]. This recent research has

revealed the importance of the local aspects of sleep [40]. This

notion of “local sleep” challenges the view that sleep is a global

phenomenon and raises the question of locally defined sub-stages

[41]. While these studies point to the importance of analyzing all

available channels of EEG, the AASM guidelines ignore much of the

spatial information. The incorporation of spatial information in our

framework is highly feasible and represents another low-hanging

fruit for its application.

3.3. Broadening the characterization of sleep time series

To our knowledge, a comprehensive and interdisciplinary li-

brary of time-series analysis, such as highly comparative time-series

analysis (hctsa [21,22]), has never been systematically applied to

sleep EEG data. While sleep scoring studies typically investigate the

significance of single measures, hctsa offers the opportunity to

assess the discriminative power of over 7700 features at once (for

information on the level of redundancy of the hctsa library, see

Fig. S3). In the last part of the paper, we illustrated how our

approach can help identify highly discriminative features for the

distinction of the different pairs of stages. These features could

incorporate additional meaningful information in sleep scoring and

refine the current description of sleep architecture.

While some may be concerned that our approach will drown

researchers in the massive number of features in space and time,

this problem can be overcome by leveraging machine learning

techniques [32], a highly promising interdisciplinary research

agenda (e.g., expediting and replicating traditional sleep scoring by

humans [42]). While this is not what we aimed for in the present

work, we see a similar approach can be usefully incorporated

within our framework.

Our data-driven approach recapitulated some of the existing

sleep scoring literature, but also identified less frequently used

features that have also been described as discriminative in past

automatic scoring studies. An interesting feature highlighted by our

analyses is the slope of the linear fit to the power spectrumdthe

most discriminative feature across all 10 pairs of stagesdwhich has

been recently used to track changes in consciousness [43] or vigi-

lance state [44]. We also found highly performing features that

have rarely received attention, including visibility graphs, symbolic

motifs, automutual information, distributional shape and multi-

scale entropy. It is unclear, however, if the specific features we

identified generalize to a larger and more diverse dataset. Future

work needs to test if our results replicate among a larger and more

diverse population.

Our approach examined all of these features at once without

cherry-picking which ones to test and report. Selective testing and

reporting of a single feature in an individual study runs a significant

risk in the replication crisis. This is a pervasive problem across the
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scientific fields, but in particular, it is a significant problem in the

young field of data-analysis intense neuroscience (e.g., Ref. [45]).

Such risk can be minimized using time-series feature extraction

tools like hctsa.

3.4. Future implications

As we have already mentioned, there are already various

feasible and impactful research projects that can arise from our

framework. As such, this paper is a first step towards the estab-

lishment of a purely data-driven sleep classification method to

discover sleep sub-stages that are not visible to the human eye.

We also note that our framework (which focuses just on the

univariate dynamics of individual system elements) can be

extended to incorporate interactions between pairs of elements of

the system represented by the full multivariate time series [46].

Quantifying pairwise dependences between pairs of time series,

e.g., using methods like correlation and coherence, has been

attracting attention in signal processing of the task-related EEG

analysis, but not utilized in sleep staging. Systematic investigations

of temporally lagged correlations between electrodes are likely to

characterize functional and effective connectivity among brain

areas, which would arrive at a more reliable and fine-grained

definition of sleep stages based on brain mechanisms.

In terms of application of our framework, we believe that clin-

ical applications are highly promising. The AASM visual scoring

rules were originally developed for healthy subjects. Conventional

scoring may be too coarse to capture relevant structural patterns in

patients with sleep disorders, whose sleep is often fragmented [47].

Moreover, sleep architecture is generally characterized by an

abnormal time course of sleep stages in sleep disorders [48],

therefore the use of contextual information is less adequate for the

classification of transitional epochs in patients. Undoubtedly,

establishing an entirely new scoring approach for the clinical field

is an arduous task. The diagnosis and treatment of sleep pathol-

ogies strongly relies on the way sleep is traditionally scored [12]. A

thorough process of validity and reliability assessment is necessary

before proposing a useful method that clinicians can trust. Our

framework is an initial step towards this goal, and could first be

used as a complement to traditional classification methods to

expand our understanding of sleep pathologies.

Indeed, our framework, as a complement to existing scoring

conventions, can promote understanding of the PSG correlates of a

certain sleep state or phenomenon. In sleep state misperception or

paradoxical insomnia, conventionally scored PSG recording may

indicate that the patients are asleep or display normal sleep pat-

terns, while they report being awake or having barely slept [49,50].

Current PSG analysis is still poor at reflecting the objective and

biological aspects of sleep and subjective ratings of sleep quality

[51,52]. In-depth analysis of PSG with hctsa could bridge this gap,

linking objective data and subjective reports for a better under-

standing of sleep state misperception and showing how it differs

from normally perceived sleep [53].

Another promising application of our framework is to find

neural signatures of various conscious states, especially in the

context of dream research [54]. In fact, the presence or absence of

dreaming does not map onto one specific AASM stage [55e57]. It is

highly plausible that some features (or their combinations) in hctsa

can help find reliable brain signatures of dreaming.

Our novel framework, which applied massive time-series

feature extraction to sleep data, represents an initial step to go

beyond traditional sleep staging. While our framework provided

broadly consistent classification results, it revealed finer structures

than the traditional approach. Once validated with more extensive

within- and across-participants validation projects, our framework

could represent a complementary method to standard norms that

generalizes across diverse populations.

4. Methods

4.1. Feature-based clustering

4.1.1. Pre-processing and selection of CCSHS data

We selected full-night polysomnographic recordings from 12

participants (6 female & 6 male) from an open-source dataset from

the Cleveland Children's Sleep and Health Study (CCSHS) [58e62].

The CCSHS cohort gathers polysomnographic recordings from

children and adolescents. In this study, we focused on the partici-

pants whose age ranged from 17.2 to 18.9 years (mean ¼ 17.7,

std ¼ 0.47; Table S1), which is the upper range of the age distri-

bution in the database. The dataset is available for download at

https://www.sleepdata.org. Each recording contained electroen-

cephalograms (C3/C2 and C4/C1, A1, & A2), bilateral electrooculo-

grams, a bipolar submental electromyogram, sampled at 256 Hz for

the EMG and 128 Hz for the EEG. We selected 1 EOG derivation

(LOC-A2: electrode placed next to the left canthus and referenced

to the opposite mastoid, A2), 1 EMG derivation (EMG1-EMG2, bi-

polar derivation over the chin) and 1 left central scalp EEG deri-

vation reference to the opposite (right) mastoid (C3-A2). This

central EEG derivation is optimal for the detection of both sleep

spindles and slow waves. To ensure a consistent sampling rate

across the three selected channels, we downsampled the EMG

channel from 256 Hz to 128 Hz. We used MATLAB (R2015b) to

process CCSHS data. It should be noted that artifacts could influence

the clustering of sleep data and additional pre-processing steps

aiming at mitigating their influence could be added, prior to hctsa

feature extraction and epoch clustering.

4.2. Feature extraction and selection

We performed feature extraction on MATLAB 2015b using hctsa

v0.95. This version includes 7749 features that are derived from

diverse scientific methodological literatures (such as physics, seis-

mology, economics, neuroscience, and artificially generated simu-

lated data). Among the 7749 hctsa features, some returned special

values (non-real values or fatal errors). We excluded these features

using the hctsa function TS_Normalize [22]. Using this function, we

removed the features that generated special values in more than

20% of the time series of each dataset. On average, we removed 1747

features per dataset (min ¼ 1174, max ¼ 1981).

The range of values generated by the remaining hctsa features

varied across features. Therefore, we normalized values using the

Scaled Robust Sigmoid (SRS) transformation implemented in

TS_Normalize. SRS is a nonlinear transformation that uses median

and interquartile ranges instead of the mean and standard devia-

tion. SRS is robust against the influence of outliers and it scales the

transformed data into a range between 0 and 1 (negative infinity

maps to 0 and positive infinity maps to 1). The normalization by

SRS of each feature value can be defined as:

f ðxÞ ¼
1

1þ eð�x�mÞ=ðiqr=1:35Þ

where m is the median value produced by the given feature across

time series and iqr is the interquartile range across time series.

4.3. Balanced datasets

Based on the AASM labels provided by the trained scorers, we

trimmed the 12 selected datasets (Table S1) to exclude any periods
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of wakefulness that occurred directly before sleep onset (defined as

the first non-wake epoch) or directly after the final non-wake

epoch. This allowed us to focus on the intra-sleep periods of

wakefulness.

The five sleep stages did not occur in equal proportions

throughout the night. Table S1 gives the proportion of each AASM

stage, which is similar to the known proportion of sleep states (e.g.,

N1 comprises only 5% of sleep whereas N2 accounts for approxi-

mately 50% [29]). To deal with the imbalance, we subsampled the

datasets to equalize the number of epochs for each stage as

explained in Fig. 2b. In each iteration of cross validation, we sub-

sampled N epochs from each sleep stage, where N is the number of

epochs in the least frequent stage for each dataset. We thus

considered 5N epochs in total. We have selected the datasets with

N � 37 (minimum total epochs ¼ 185). We repeated the above

subsampling procedure 100 times on all available data. This assured

us that the result of our analysis reflects the nature of the entire

dataset.

4.4. k-means clustering

We used k-means clustering (MATLAB function kmeans with

Replicates ¼ 50, Max Iterations ¼ 500 from Statistics and Machine

Learning Toolbox version 11.2). This algorithm groups data based

on its Euclidean distance to the center location for each of k clusters

[63]. We used it due to its simplicity, efficiency and wide presence

in the literature [64]. To enable comparison with the 5-way clas-

sification of the AASM guidelines, we set k to be 5. However, by no

means does our framework impose this number.

4.5. Sequential maximum matching

When comparing the unsupervised clustering results with the

AASM labeling, we assigned each cluster into one of the 5 AASM

sleep stages (Fig. 2e), using our “sequential maximum matching”

algorithm. This algorithm matches each cluster to one of the five

AASM sleep stages based on the most represented AASM label in

the cluster. For details, see Fig. S4. When there was a tie, we

selected a cluster according to the cluster order randomly gener-

ated by the k-means algorithm.

4.6. Visual scoring task

During standard visual scoring, human scorers have access to a

full night of temporally sequenced data. This allows them to rely on

temporal context to score the epoch, especially when it is ambig-

uous (e.g., is it preceded/followed by N2, N3 or REM?). To compare

the epoch-by-epoch discrimination in our approach with tradi-

tional scoring, we created a task where the surrounding context

was eliminated for human scorers. We recruited 4 scorers (‘No-

context scorers’), who had substantial experience in sleep scoring

according to the AASM guidelines (all from the sleep laboratory at

Monash University including one of the authors, TA). They scored

isolated 30-s epochs one at a time in a 5-way forced choice manner

using our custom-made sleep scoring experimental software

(MATLAB, Psychtoolbox). In each trial, the software displayed an

isolated 30-s signal consisting of 1 EEG (C3-A2), EOG (LOC-A2) and

EMG (EMG1-EMG2). Participants were asked to score these epochs

in accordance with the AASM sleep scoring guidelines and to the

best of their ability. The number of epochs for each sleep stage was

equalized. Two participants scored a subset of randomly selected

epochs (n ¼ 37 trials per stage, in total n ¼ 185) from a balanced

dataset (ID: 1800001) and the two others scored epochs (n ¼ 41

trials per stage, in total n ¼ 205) from a different balanced dataset

(ID: 1800005).

4.7. t-SNE

To provide a visualization of N2 time series from the hctsa

feature space, we used t-distributed stochastic neighbor embed-

ding (t-SNE), which projects high-dimensional data into a low-

dimensional space [65]. We performed a two-dimensional t-SNE

projection with MATLAB's function tsne (default parameters) using

as input the EEG, EOG and EMG feature values of the N2 time series.
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