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a b s t r a c t

Objective/Background: The aim of this study was to examine the relationship between overnight

consolidation of implicit statistical learning with spindle frequency EEG activity and slow frequency delta

power during non-rapid eye movement (NREM) sleep in obstructive sleep apnea (OSA).

Patients/Methods: Forty-seven OSA participants completed the experiment. Prior to sleep, participants

performed a reaction time cover task containing hidden patterns of pictures, about which participants

were not informed. After the familiarisation phase, participants underwent overnight polysomnography.

24 h after the familiarisation phase, participants performed a test phase to assess their learning of the

hidden patterns, expressed as a percentage of the number of correctly identified patterns. Spindle fre-

quency activity (SFA) and delta power (0.5e4.5 Hz), were quantified from NREM electroencephalography.

Associations between statistical learning and sleep EEG, and OSA severity measures were examined.

Results: SFA in NREM sleep in frontal and central brain regions was positively correlated with statistical

learning scores (r ¼ 0.41 to 0.31, p ¼ 0.006 to 0.044). In multiple regression, greater SFA and longer sleep

onset latency were significant predictors of better statistical learning performance. Delta power and OSA

severity were not significantly correlated with statistical learning.

Conclusions: These findings suggest spindle activity may serve as a marker of statistical learning capa-

bility in OSA. This work provides novel insight into how altered sleep physiology relates to consolidation

of implicitly learnt information in patients with moderate to severe OSA.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Sleep plays a role in consolidating explicitly learnt information

for later recall [1]. Sleep spindles, and slowewave activity (SWA),

are two key electroencephalography (EEG) micro-architecture

characteristics during non-rapid eye movement (NREM) sleep
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putatively involved in memory processes [2,3]. Sleep spindles are

discrete waxing-and-waning EEG oscillations which occur mainly

in N2 stage of NREM sleep [4,5]. Sleep spindle frequency activity

(SFA) typically falls within the sigma EEG range (11e16 Hz) when

using power spectral analysis to quantify EEG micro-architecture

[6]. SWA is comprised of high amplitude, slow frequency EEG ac-

tivity, typically quantified in the delta frequency range that occurs

predominantly in slow wave sleep. Studies have consistently

shown that greater sleep spindle frequency and SWA during NREM

sleep are associated with improved declarative and procedural

memory consolidation overnight [7].

Implicit learning is the learning of information without

conscious awareness, or intention to do so. One variant of implicit

learning is ‘statistical learning’, which refers to the brain's ability to

detect statistical regularities from visual, auditory, and tactile

stimuli [8,9]. This ability to extract repeated patterns allows people

to categorise and segment continuous information, predict up-

coming events, and develop basic mechanisms of perception and

action [10,11]. Statistical learning appears to be independent of

general intelligence or working memory ability [11] but relies on

multiple underlying components including attention, processing

speed and memory [8]. Importantly, sleep appears to consolidate

statistical learning and the detection of hidden regularities [12].

An overnight sleep period between exposure to the stimuli and

recognition resulted in higher levels of statistical learning

compared to those who performed the test phase 30 min after

exposure [13]. A longer duration of slow wave sleep (SWS) was

associated with better statistical learning performance, however,

no quantitative analysis of sleep EEG micro-architecture was per-

formed [13]. Analysis of sleep EEG micro-architecture showed

higher fast spindle activity (13e16 Hz) in the right hemisphere

fronto-central regions during overnight sleep was associated with

better statistical learning [14], however, this study did not examine

SWA during NREM sleep as a possible correlate of implicit learning.

As these studies were conducted in healthy participants, the

effects of sleep disorders on statistical learning are unknown.

Obstructive sleep apnea (OSA) is a common sleep disorder which

affects approximately 20% of the middle-aged population [15]. OSA

leads to significant intermittent hypoxemia and sleep fragmenta-

tion, resulting in daytime dysfunction and cognitive impairment in

some individuals [16]. In untreated OSA, there is evidence of ab-

normalities in NREM sleep micro-architecture, with reported def-

icits in sigma EEG power (sleep spindle frequency) as well as

reduced SWA and altered SWA dynamics compared to controls [17].

Recent studies suggest that on a group level, OSA does not impair

statistical learning compared with healthy controls [18,19]. Never-

theless, there appeared to be wide inter-individual variability in

statistical learning performance within the OSA group as shown by

relatively large standard deviations. While there is evidence in

healthy subjects that fast sleep spindle activity partly explains the

individual variability in statistical learning [14], this has not been

explored in OSA, a disorder that markedly impacts sleep macro

(sleep stages) and micro-architecture (EEG oscillations).

The primary aim of this study was to examine the relationship

between statistical learning and SFA and SWA in NREM sleep in

untreated OSA. We hypothesised that higher SFA and higher SWA in

NREM sleep would correlate with better statistical learning. The

secondary aim of this studywas to examine the relationship between

statistical learning and OSA disease severity markers such as apnea

hypopnea index (AHI), lowest oxygen saturation (SpO2%), and EEG

arousal index.We hypothesised thatmore severe OSA severity would

correlate with worse statistical learning performance. The tertiary

aim of this study was an exploratory analysis of sleep macro-

architecture and statistical learning. Of interest were the percent of

stage N2, N3, and REM, aswell as total sleep time and sleep efficiency.

2. Materials and methods

Data was analysed from patients enrolled in a larger study

conducted to identify potential biomarkers of neurobehavioral

dysfunction in the OSA population (NHMRC #GNT1028624). Ethics

approval was granted by the Sydney Local Health District Human

Research Ethics Committee (X12-0028). All participants provided

written informed consent and the trial was registered on the

Australian and New Zealand Clinical Trials Registry (ANZCTR

No:12613001171707).

2.1. Participants

Male and female participants aged 25e65 years with screening

PSG confirmed diagnosis of untreated OSA (defined by an apnea

hypopnea index (AHI) � 15/hr and 3% oxygen desaturation index

(ODI) � 10/hr) were invited to participate in the study. Participants

also had to weigh less than 150 kg (the limit was for the brain MRI

required for theprimary study), be able to readand speakEnglish, and

perform neurobehavioral tests. Participants were either identified by

treating physicians or were recruited through community advertise-

ment. Participants with other sleep disorders or any clinically signif-

icant or uncontrolled comorbidity that required continuous medical

care (eg cardiac failure, hypertension, hypercapnia, chronic obstruc-

tive pulmonary disease, type 1 diabetes) were excluded. Other

exclusion criteria included: a history of head injury or psychiatric/

neurological disorders, current use of CNS active medications/drugs

(eg anti-depressants, anti-psychotics, opiates, antihistamines), or

current heavy alcohol consumption, current shift work or irregular

sleep/wake routine, or current smokers.

2.2. Study protocol

Participants attended the sleep laboratory at the Woolcock

Institute of Medical Research, Sydney, Australia. Participants

arrived at 5:30 pm. The statistical learning task familiarisation

phase (exposure to the stimuli) occurred at 6:30pm in the evening

prior to an overnight PSG. The test phase occurred at the same time

in the evening 24 h later under the same conditions. All participants

remained in the controlled environment of the sleep laboratory for

the entire 24 h period as part of the larger trial.

2.3. Assessments

2.3.1. Statistical learning task

The statistical learning task was originally created for use in

studies with child populations [20] and has subsequently been

validated in studies with adults [21,22]. The statistical learning task

was divided into two phases; the familiarisation phase, followed by

the test phase. The stimuli were 18 cartoon-like alien pictures (see

Appendix Figure A.1 for the pictures). The pictures did not resemble

real-world animals, people, or popular cartoon characters. Six pic-

tures were used only for instruction and practice. The practice alien

pictures were pink in colour and different from those used in the

familiarisation and test phases to ensure no unintentional priming

to the statistical regularities. The pictures in the familiarisation

phase were divided into four groups of triplets (ABC, DEF, GHI, and

JKL; with each letter representing a different picture, see Appendix

Figure A.1 for full description of the task). The statistical learning

task was programmed using E-Prime (v2.0, Psychology Software

Tools, Sharpsburg, PA., U.S.A.).

After the completion of the familiarisation phase, participants

were told there would be no further testing involving this task. This

was so participants did not unintentionally reminisce on the pic-

tures, which potentially could have explicitly reinforced the triplet
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boundaries. Participants were only informed of the test phase

immediately prior to the test, ensuring participants did not attempt

to explicitly remember patterns during the interceding 24 h.

Immediately prior to the instructions of the test phase, participants

were asked if they recognised any pattern with the pictures, and if

so, to describe them. After this question, participants were

informed there were hidden triplets, and were provided in-

structions on the test phase. Participants received a different

random order for the test trials. Statistical learning was expressed

as a percentage of the number of triplets the participant identified

correctly (test score/64 test trials x 100).

2.3.2. Polysomnography

Full overnight PSG was conducted using Embla Titanium system

(Natus, CA, USA) with an 8-h time in bed opportunity (10pm to

6am). PSG included EEG, left and right electrooculogram (EOG),

chin electromyogram (EMG), electrocardiogram (ECG), nasal

airflow pressure (nasal cannula), thoracic and abdominal respira-

tory effort, finger pulse oximetry (SpO2%), body position, and leg

EMG measurements. EEG was recorded at the following scalp po-

sitions and referenced to the contralateral mastoid: F3-M2, F4-M1,

C3-M2, C4-M1, O1-M2, O2-M1, and sampled and stored at 512 Hz.

Sleep staging and scoring were performed using standardised

assessment criteria by registered sleep technologists [23]. PSG re-

cordings were exported into standardised digital European Data

Format (EDF) prior for all subsequent quantitative EEG analyses.

2.4. Quantitative EEG analysis

2.4.1. EEG artefact processing

All night PSG recordingswere subjected to automatedEEGartefact

processing. An algorithm identified and rejected artefactual EEG data

at a resolution of 5-s epochs based on artefact detection threshold

parameters previously validated to detect sleep EEG artefacts against

artefacts manually scored by three experienced technologists (refer-

ence standard) in overnight PSGs recordings from participants with

and without sleep disordered breathing [24]. In the validation study,

the algorithm had a high level of accuracy of 94.3, 94.7 and 95.8% for

detecting artefacts during the entire PSG, NREM sleep and REM sleep,

respectively. Contaminated 5-s epochs identified as containing arte-

fact were subsequently excluded from EEG analysis. Quantitative EEG

(qEEG) measures were derived from all artefact-free sleep EEG re-

cordings during overnight PSG.

2.4.2. Power spectral analysis

Artefact-free epochs were analysed using a standard fast Fourier

transform (FFT) with a rectangular weighted window for each non-

overlapping 5-s epoch of EEG for frontal (F3-M2, F4-M1) and cen-

tral (C3-M2, C4-M1) channels. The absolute spectral power (mV2)

was calculated for EEG activity within 0.5e35 Hz range. Delta EEG

power (0.5e4.5 Hz) was used as a measure of SWA. Spindle activity

typically occurs in 11e16 Hz range [6] and based on this we

calculated slow (11e13 Hz) and fast (13e16 Hz) spindle frequency

activity (SFA). The EEG power for each sleep-staged epoch was

calculated by averaging data from up to six artefact-free 5-s epochs

of EEG that comprised that 30-s recording segment. The weighted-

average spectral power within the defined frequency bands was

then computed for NREM sleep stages (N2 and N3).

2.5. Statistical analysis

Forty-seven (44 males) of 58 participants enrolled in the main

study completed the statistical learning task and were included in

this present secondary analyses. Analyses were conducted using

SPSS 22.0 (IBM Corp., Armonk, NY, USA). Descriptive data are

presented as mean ± standard deviation unless otherwise stated.

All data were checked for normal distribution, and where neces-

sary, were normalised using a log10 transformation. For statistical

learning, a one-sample t-test with effect sizewas used to determine

whether performance was significantly above chance level of 50%.

Statistical significance was set at a ¼ 0.05.

Parametric correlations were performed between statistical

learning test phase scores and the primary qEEG outcomes: slow

and fast SFA and SWA in NREM sleep. Secondary outcomes included

OSA disease severity: apnea hypopnea index (AHI, events per hour),

lowest oxygen saturation (SpO2%), and EEG arousal index (events

per hour). Tertiary outcomes included PSG derived sleep macro-

architecture: total sleep time (TST, mins), sleep efficiency (%),

stage N2 (%), N3 (%), and REM (%) sleep.

Case-wise regression diagnostics were performed to detect any

potential outliers and high leverage data points, by using Studen-

tized Residuals for outliers, Leverage Values for extreme values, and

Cook's D for highly influential values. Cases that exceeded these

values were removed, and correlations were rerun. These are pre-

sented in the Appendices, Table A.1.

Post-hoc analysis using Fisher's Z-transformation was per-

formed to determine if correlation coefficients were significantly

different from each other for disease severity measures (AHI, EEG

arousal index, lowest SpO2 vs SFA, SWA).

Following the correlation analysis, backward stepwise multiple

linear regression models were used to determine if spindle vari-

ables were significant predictors of statistical learning while con-

trolling for potentially important confounders. The confounder

variables were selected according to 1) variables that were

considered clinically important for OSA and may influence statis-

tical learning and, 2) variables that were significant correlates with

the statistical learning outcome at p < 0.05. A separate set ofmodels

were also conducted to account for the level of education. As such

the main models always included age, Epworth sleepiness scale

(ESS), AHI, sleep onset latency, and SFA variables of interest. Models

accounting for education always included age, ESS, sleep onset la-

tency, years of education and SFA variable of interest. It important

to note that only sleep onset latency and the spindle variable met

the significance criteria 1 above and were significantly correlated

with statistical learning outcome (both p < 0.01). All other predictor

variables were included based on clinical significance criteria 1

above, with none significantly correlated with statistical learning at

the univariate level (all p > 0.2) All predictor variables were log

transformed if they were not normally distributed. All predictors

were not correlated with one another and were tested for collin-

earity (tolerance and variance inflation factor (VIF) were all within

normal range) to ensure this was not a problem in the final models.

3. Results

3.1. Participant characteristics and baseline polysomnography

Demographics and standard sleep study measures of the 47 par-

ticipants included in this analyses arepresented inTable1.Onaverage,

participants were middle-aged, obese and had moderate to severe

untreated sleep apnea. Sleep macro-architecture showed that the

duration of total sleep timewas 402.3 min andwas comprised of 60%

stage N2, 16.5% stage N3 and 19.3% stage REM sleep (see Appendices

Table A.1 for full overnight polysomnography data).

3.2. Statistical learning performance

The detection of repeated pictures during the familiarisation

phase was 91.6 ± 8.0% (range: 70.8e100.0%). The average perfor-

mance score in the test phase of the task, which assessed the level
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of implicit learning, was 55.4 ± 15.1% (range of scores: 20.3e92.2%).

This was significantly above chance level (t46 ¼ 2.45, p ¼ 0.018,

Cohen's d ¼ 0.72). Furthermore, when asked immediately prior to

the test phase, no participants reported they noticed any patterns

with the order of the pictures.

3.3. Relationship between spindle frequency activity in NREM sleep

and statistical learning

Of the 47 participants, sleep qEEG measures were attained in 44

participants for the frontal and central sites (see Appendices

Table A.2 for NREM sleep qEEG measures). Correlation co-

efficients between normalised spindle activity measures in NREM

sleep and statistical learning scores (test phase) are presented in

Table 2. There were positive correlations between statistical

learning performance and slow (11e13 Hz) spindle activity at

frontal (F3 and F4) and central (C3 and C4) brain regions. Fast

spindle activity (13e16 Hz) at frontal and right central (C4) regions

were significantly correlated with statistical learning (p < 0.05),

with a trend observed at C3 (r ¼ 0.292 [95% CIs 0.001 to 0.537],

p ¼ 0.054).

Correlations repeated after removing outliers and highly influ-

ential cases identified as part of the case wise regression di-

agnostics did not change the results except that the trend observed

with fast spindle activity at C3 became statistically significant

(r ¼ 0.453 [95% CIs 0.237 to 0.672], p ¼ 0.003); and thus all spindle

frequency activity measures at both frontal and central sites were

positively correlated with statistical learning performance (see

Appendices Table A.3).

3.4. Relationship between SWA in NREM sleep and statistical

learning

Correlation coefficients between normalised SWA in NREM

sleep and statistical learning scores (test phase) are presented in

Table 2. Whilst frontal SWA demonstrated a trend for positive

correlations with statistical learning performance (F3, r ¼ 0.264

[-0.007 to 0.490], p ¼ 0.083], no EEG sites were statistically

significant.

3.5. Relationship between OSA severity metrics, polysomnography

sleep macro-architecture measures and statistical learning

Correlations between statistical learning performance and OSA

severity metrics, as well as PSG-derived measures of sleep macro-

architecture, are presented in Table 1.

OSA severity measures (AHI, EEG arousal index, lowest SpO2%)

showed a similar direction of effect with worse severity and poorer

statistical learning performance, however, none of these associa-

tions were statistically significant. Furthermore, comparisons using

Fisher's transformation showed that the associations for AHI with

statistical learning were significantly different than the correlations

with SFA and SWA (Z ¼ 2.157 to 2.605, all p < 0.05). Similarly,

correlations between EEG arousal index and statistical learning

were different than the correlations with all SFAmeasures at frontal

derivations (F3, F4, z ¼ 2.149 to 2.493, p < 0.05) and for SWA at F3

(z ¼ 1.727, p < 0.05) but not F4 (z ¼ 1.55, ns). However, the asso-

ciation between lowest SpO2 and statistical learning was not

different to the correlations observed for SFA measures or SWA

(p > 0.05). Of note, for this exploratory analysis, comparisons

Fig. 1. Linear regression scatter plots showing the overall model summary with the regression standardised predicted value vs Statistical Learning (%) for the A - C Frontal F3-M2

and DeF Frontal F4-M1 models. Panel B, E and C, F represent the partial regression plots for the individual predictors, sleep onset latency and slow spindle activity vs statistical

learning at the frontal F3-M2 and F4-M1 sites.
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between correlations were performed using SFA measures and

SWA derived from frontal regions only (F3, F4).

Regarding our tertiary outcomes, there was no statistically sig-

nificant associations between statistical learning and PSG-derived

sleep macro-architecture measures: TST (mins), sleep efficiency

(%), Stage N2 (%), Stage N3 (%), and REM (%).

3.6. Multivariate regression analysis: predictors of statistical

learning performance

Table 3 and Fig. 1 shows the results of multivariate stepwise

linear regression model results. All models included age, ESS, AHI,

sleep onset latency, and the SFA variables of interest. The majority

of the models showed that greater spindle frequency activity and

longer sleep onset latency were consistently the only significant

predictors of better statistical learning performance. Consistent

with the univariate correlation analysis, the strongest associations

were observed for the slow spindle frequency activity at the frontal

electrode sites. Level of education did not make a difference to

these outcomes and was not related to statistical learning

performance.

4. Discussion

This study examined the relationships between implicit statis-

tical learning and overnight sleep EEG micro-architecture and

traditional PSG measures in untreated OSA. Firstly, the results of

this study show that higher SFA during NREM sleep in the fronto-

central brain regions was consistently correlated with better sta-

tistical learning performance. Secondly, traditional OSA severity

metrics of AHI, EEG arousal index and minimum nocturnal oxygen

saturation levels from overnight PSG were not associated with

statistical learning performance. Importantly, correlation compar-

isons showed that implicit statistical learning is more strongly

related to SFA than traditional severity metrics such as the AHI and

EEG arousal index. Multivariate linear regression modelling ac-

counting for important clinical confounders have consistently

revealed that the two significant predictors of greater statistical

learning were higher SFA and longer sleep onset latency.

Our results show that lower spindle frequency activity during

NREM sleep in fronto-central brain regions was associated with

poorer statistical learning consolidation in this population of un-

treated OSA patients. Analyses performed on all participants

demonstrated slow spindle activity for all frontal and central sites,

and fast spindle activity at frontal sites and at C4 were correlates of

statistical learning, with a trend observed for fast spindle activity at

C3which became statistically significant after performing casewise

regression diagnostics. Furthermore, significant correlations with

statistical learning remained after removal of outliers and highly

influential values. These data indicate an overall consistent rela-

tionship between spindle activity in frontal and central brain re-

gions and statistical learning consolidation.

Only one study, in young, non-OSA healthy volunteers, has

examined sleep spindle activity and statistical learning [14],

showing higher fast spindle activity in the fronto-central region

was associated with better statistical learning. Their participants

receivedmultiple exposures to the stimuli (three exposures prior to

sleep), compared to only the one exposure in our study. This led to

some of their participants becoming partially, and even completely,

explicitly aware of the statistical regularities, which was associated

with increased slow spindle activity in SWS. Thus, these results

suggest that sleep spindles play an important role in learning sta-

tistical regularities, regardless of whether learning was implicit or

explicit.

Table 1

Participant clinical characteristics and baseline polysomnographic measures; and Pearson's correlation coefficients between statistical learning performance and secondary

and tertiary outcomes.

Mean (SD) Correlation with Statistical Learning

Pearson's correlation coefficient p-value

Clinical measures

Age (years) 48.8 (8.8) 0.122 0.416

Body Mass Index (kg/m2) 30.1 (4.3) 0.016 0.912

Epworth Sleepiness Score (/24) 9.9 (4.5) �0.087 0.562

PSG-derived OSA severity measures

Apnea Hypopnea Index (/hr) 35.5 (22.7) �0.054 0.721

Minimum Oxygen Saturation (Lowest SpO2%) 81.4 (8.2) 0.084^ 0.575

EEG Arousal Index (/hr) 30.0 (17.9) �0.065^ 0.665

PSG sleep macro architecture

Total Sleep Time (mins) 402.3 (41.8) �0.014^ 0.925

Wake After Sleep Onset (mins) 50.4 (26.5) 0.084 0.574

Sleep Efficiency (%) 87.3 (7.0) �0.143 0.338

Sleep Onset Latency (mins) 6.1 (7.3) 0.394 *̂ 0.006

N1 Sleep (% total sleep) 4.3 (2.3) 0.026 0.863

N2 Sleep (% total sleep) 60.0 (9.8) 0.084 0.575

N3 Sleep (% total sleep) 16.5 (8.0) 0.106 0.477

REM sleep (% total sleep) 19.3 (6.1) 0.283 0.054

N ¼ 47, *p < 0.05, ^ indicates variables that were not normally distributed and were log transformed for the Pearson's correlational analyses.

Table 2

Correlations between spindle frequency activity and slowwave activity in NREM sleep and statistical learning during the test phase for frontal and central cortical sites. Shaded

boxes highlight significant correlation (p < 0.05). Pearson's correlation coefficients (95% confidence intervals).

Brain Region EEG site Slow Spindle Activity (11e13 Hz) Fast Spindle Activity (13e16 Hz) Slow Wave Activity (delta power, 0.5e4.5 Hz)

Frontal F3-M2 (n ¼ 44) r ¼ 0.411 (0.132e0.635) p ¼ 0.006 r ¼ 0.353 (0.070e0.596) p ¼ 0.019 r ¼ 0.264 (�0.007-0.490) p ¼ 0.083

F4-M1 (n ¼ 44) r ¼ 0.368 (0.079e0.598) p ¼ 0.014 r ¼ 0.347 (0.021e0.604) p ¼ 0.021 r ¼ 0.228 (�0.070-0.453) p ¼ 0.136

Central C3-M2 (n ¼ 44) r ¼ 0.343 (0.068e0.593) p ¼ 0.023 r ¼ 0.292 (0.001e0.537) p ¼ 0.054 r ¼ 0.206 (�0.054-0.417) p ¼ 0.180

C4-M1 (n ¼ 43) r ¼ 0.342 (0.048e0.573) p ¼ 0.025 r ¼ 0.309 (�0.009-0.588) p ¼ 0.044 r ¼ 0.247 (0.030e0.438) p ¼ 0.110
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The correlation between statistical learning and slow and fast

spindle activity in our study of untreated OSA patients is note-

worthy of further discussion. The presence of two types of sleep

spindles with distinct topographies has been extensively reported

with slow spindles more prominent over frontal EEG regions and

fast spindles occurring primarily over central and parietal regions

[3,7]. Evidence also suggests different putative functional roles for

fast and slow spindles with associations observed between fast

spindle activity and memory performance but not slow spindles.

Studies that have reported associations between memory

improvement and fast spindles but not slow spindles assessed

declarative [25], visuospatial [26] and procedural/motor memory

[27-30]. Our results show slow and fast spindle activity was related

to statistical learning, a variant of implicit learning. These discor-

dant findings between studies may be explained by the different

type of memory domains assessed. Moreover, fast spindles have

been associated with increased activation of the hippocampus and

motor cortical areas and are thought to be more related to thala-

mocortical coupling processes that underlie hippocampal-

dependent memory processes than slow spindles [7]. Slower fre-

quency spindle events have been reported in untreated OSA groups

[17,31] and it is possible these events, though slowerwhen detected

at the surface level EEG recordings may maintain the same func-

tional role as faster frequency spindles detected in healthy subjects.

The prior studies assessed correlations between spindles and

memory retention in small samples of typically 20e30 or less

participants and may have been underpowered to detect any

relationship between slow spindles and memory performance.

Future larger studies that assess the strength of coupling between

fast and slow spindles and slow oscillations [32], determine

subject-specific frequencies for slow and fast spindle activity [33],

and assess different memory domains in OSA may help elucidate

these findings further.

Neuroimaging studies have also shown that the basal ganglia, in

particular the striatum, is involved in statistical learning and more

generalised implicit learning [34-36]. Sleep spindles are generated

in the thalamo-reticular nucleus in the thalamus [37]. Importantly,

the basal ganglia encapsulates the thalamus, with dense connec-

tions between the thalamus and striatum [38]. It is possible that the

association between statistical learning performance and spindle

activity may reflect the integrity of the thalamo-striatal connec-

tivity. Moreover, chronic OSA appears to both physically damage

the basal ganglia, via reductions in white matter, and disrupt

functional connectivity [39,40]. While it is possible that OSA-

induced damage to the basal ganglia is one potential mechanism

which impairs statistical learning, this cannot be confirmed by the

current study and further neuroimaging studies are required.

SWA was not significantly correlated to statistical learning per-

formance in our study, however, the direction of the relationship

was similar to that observed with SFA, with a trend for a positive

association between frontal SWA and performance. The only other

study that directly examined SWA in relation to statistical learning

was conducted with 6.5 month old infants, making it very difficult

to compare the results [41]. An experimental study that reduced

the amount of SWA during slow wave sleep in healthy participants

using auditory-induced arousals did not affect the performance of

an implicit learning task the following day, but did impair declar-

ative (explicit) memory, as well as vigilance [42]. It is possible that

the consolidation of implicitly learnt informationmay only be sleep

spindle dependent, and not SWA (0.5e4.5 Hz) dependent. Further

research is needed to address this assertion, as well as the role of

slow oscillations of less than 1 Hz, which was not specifically

examined in our study.

This study also highlighted that longer sleep onset latency was a

predictor of better statistical learning performance and sleep la-

tency explaining approximately 15% of the variance. We speculate

that shorter sleep latency would be marker of greater daytime

sleepiness in an individual with OSA. There are limited studies

examining the relationship between objective PSG measures of

sleep architecture and statistical learning performance. In healthy

volunteers, of the four studies that have examined sleep stages and

timings as correlates of statistical learning performance, none

assessed sleep onset latency [13,14,43,44]. Excessive sleepiness has

been linked with worse neuropsychological performance in OSA,

mainly poorer attention and vigilance [45], however, neither of the

studies that examined statistical learning within an OSA population

investigated sleepiness-basedmetrics as a possible correlate for the

extraction of hidden statistical regularities [18,19]. Nevertheless,

the results of this study suggest that sleep onset latency arguably

reflecting daytime sleepiness is an important determinant of sta-

tistical learning performance in OSA.

Aside from sleep onset latency, our results showed no significant

association between statistical learning and any other sleep macro-

architecture measure such as N2 or N3 sleep. Whilst spindles occur

primarily during stage N2 sleep, sleep spindles are also present in

N3 [46]. Furthermore, there is considerable intra-individual varia-

tion in spindle activity. This implies that the amount of stage N2

sleep may not be an accurate indicator of overall spindle activity

Table 3

Multivariate stepwise linear regression model outputs for statistical learning performance. The majority of the models showed that greater spindle frequency activity and

longer sleep onset latency were consistently the only significant predictors of better statistical learning performance. All models included age, Epworth sleepiness scale score,

apnea hypopnea index, lowest SpO2%, sleep onset latency and the slow and fast spindle frequency activity at frontal and central EEG electrode placement sites.

Regression Model Predictors Standardised b Coefficient t p Adjusted R2

Slow Spindle Regression Models

Frontal F3-M2 Slow Spindle Activity (11e13 Hz)

Sleep Onset Latency

0.400

0.404

3.14

3.17

0.003

0.003

0.300

Frontal F4-M1 Slow Spindle Activity (11e13 Hz)

Sleep Onset Latency

0.357

0.402

2.72

3.07

0.009

0.004

0.263

Central C3-M2 Slow Spindle Activity (11e13 Hz)

Sleep Onset Latency

0.309

0.386

2.30

2.87

0.027

0.006

0.230

Central C4-M1 Slow Spindle Activity (11e13 Hz)

Sleep Onset Latency

0.314

0.395

2.32

2.92

0.025

0.006

0.235

Fast Spindle Regression Models

Frontal F3-M2 Fast Spindle Activity (13e16 Hz)

Sleep Onset Latency

0.316

0.384

2.36

2.87

0.023

0.006

0.235

Frontal F4-M1 Fast Spindle Activity (13e16 Hz)

Sleep Onset Latency

0.306

0.379

2.27

2.81

0.29

0.008

0.227

Central C3-M2 Sleep Onset Latency 0.413 2.94 0.005 0.151

Central C4-M1 Fast Spindle Activity (13e16 Hz)

Sleep Onset Latency

0.258

0.382

1.86

2.73

0.071

0.009

0.201
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[47]. We did not observe any relationship between the percentage

of SWS (N3) and statistical learning. Previous studies have shown

SWS is associated with the consolidation of auditory statistical

learning [13,43,44]. Along with differences in modalities, the

familiarisation phase in these studies was immediately followed by

the first of two test phases, with the second test phase occurring

after a nap or an overnight PSG. Whilst participants were not

informed of their performance in the initial test phase, participants

were made aware of a regular pattern in the stimuli, which intro-

duced an element of explicitness into their learning. Importantly,

SWS plays an important role in consolidating explicit memory [2],

thus potentially explaining differences in results between our study

and theirs. Other studies have utilised a visual statistical learning

task known as the ‘weather prediction task’ (WPT) [48-51]. One

study showed the amount of REM sleep during a 90-min nap was

associated with improved visual statistical learning performance

[48]. In contrast, another study showed the amount of SWS was

strongly correlated with visual statistical learning performance,

whereas stage N1 and N2 were weakly correlated. Participants in

this study, however, were exposed to the WPT 14 times over seven

days (once eachmorning and evening) [51]. Sleep variables were an

average of the seven nights. Two more studies showed no corre-

lates between visual statistical learning performance and any sleep

stage [49,50]. [49]; however, had participants perform the test

phase immediately after the familiarisation phase (before sleeping)

and then again after overnight sleep. Interestingly, WPT learning

prior to sleep correlated to the amount of REM sleep, whereas post-

sleep WPT learning was not correlated to any sleep metric. Overall,

the lack of similarities in correlates between our study and these

studies may be explained by differences in the modalities of the

tasks employed (auditory vs. visual), the presence of an immediate

test phase after exposure to the stimuli, and in the healthy young vs

the middle-aged clinical populations across studies.

AHI, EEG arousal index, lowest SpO2%, were not correlated with

statistical learning. Previous studies examining statistical learning

in OSA patients did not examine relationships between OSA

severity metrics and statistical learning, making our findings novel

[18,19]. Whilst our results seemingly suggest OSA severity itself

does not affect statistical learning, there is need for more research

to confirm these findings, as OSA metrics have been shown to be

inconsistent and unreliable correlates of the neurobehavioral def-

icits [52,53].

This is the first study to examine statistical learning and as-

sociations with sleep macro- and micro-architecture in patients

with OSA. The study assessed statistical learning in the largest

clinical group of well-characterised patients with moderate-

severe OSA to date and uses routine PSG to derive quantitative

EEGmeasures. Furthermore, it uses a validated statistical learning

task to examine the relationship between implicit learning ca-

pacity and sleep micro-architecture. Limitations include the lack

of healthy control comparator group and a baseline night. How-

ever, the approach used in this study attempts to explain the

substantial individual variability in statistical learning capacity

and how this relates to sleep EEG micro-architecture within OSA

patients. Moreover, a baseline measure of statistical learning

would not have been possible as this would have exposed the

implicit nature of the memory task. Without a baseline night, we

are not able to draw any conclusions about the direction of effect

or for example, whether individuals who may already have a

greater number of spindles at baseline are better at statistical

learning. The timing of the testing phase of the performance task

occurred 24 h after the familiarisation phase, a similar paradigm

used in prior studies of statistical learning [13,21,43]. Though

testing administered in the morning would have been closer

temporally to the preceding sleep period, the advantages of the

24-h testing paradigm include testing at the same time of day and

adjusting for the influence of circadian phase on performance,

although the effect of circadian phase on implicit learning per-

formance has yet to be explored. This study did not include

discrete sleep spindle events but rather focused on EEG spectral

power as a proxy of sleep spindles. Using 62 channel high-density

EEG, the topographies of sigma power were consistent with

spindle density and peak spindle amplitude, and sigma power

profiles were more stable across nights than density measures

suggesting meaningful information can be provided by spectral

measures of spindle activity [33]. Moreover, automated methods

to detect spindle events have the potential to miss relevant

spindle activity as they rely on arbitrary thresholds for spindle

identification [35,54]. Individual differences in the topography

and frequency of slow and fast spindles during N2 and N3 sleep

highlight the need for future studies to employ methodological

approaches to identify spindles at the individual level to further

our understanding of their functional role.

We showed that sleep spindle activity deficits derived from EEG

signals collected during routine PSG were correlated with worse

statistical learning. Shorter sleep-onset latency possibly indicating

greater sleepiness was also a significant predictor of statistical

learning performance. Traditional OSA severity measures derived

from PSG such as the AHI were not related to cognitive outcomes.

This highlights the utility of sleep EEG microarchitecture measures,

to provide more sensitive markers of cognitive dysfunction than

traditional metrics of disease severity in OSA.

High-density EEG during sleepmay provide further insights into

topographical brain activity during sleep [55] and how regional

deficits in sleep EEG activity in untreated OSA [56] may relate to

statistical learning processes. Discrete slow oscillations (<1 Hz) and

spindle events and their coupling appear to be important for

consolidation of declarative memories [57], but it is currently un-

clear how implicitly learnt information is governed by these dy-

namics and is thus an area for future work.

5. Conclusions

Sleep spindle activity derived from all-night poly-

somnography and sleep-onset latency were significant pre-

dictors of implicit learning performance, whereas indices of OSA

disease severity were not. This work provides novel insight into

how altered sleep physiology relates to consolidation of implic-

itly learnt information in patients with moderate to severe OSA.

These findings support the use of quantitative EEG markers as

stronger correlates of OSA-related cognitive deficits than tradi-

tional measures such as the AHI.
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