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One great challenge of modern complex trait biology is to 

understand the causal role of variants identified in genome-

wide association studies (GWAS). The reason for the difficulty is 

three-fold. First, the effector gene associated with a given GWAS 

variant is not usually known [1–3]. The usual approach is to as-

sume that the closest gene(s) to the variant site is the effector 

gene. Moderate success in locating the effector gene has been 

demonstrated in flies with this approach, as linkage disequilib-

rium tends to decay rapidly, and role of the gene in a given com-

plex trait is easy to verify using mutations [4, 5]. However, GWAS 

variants in mammals and humans often lie in long stretches of 

the genome that are in linkage disequilibrium. Many potential 

effector genes may occupy these large regions, so choosing the 

causal locus is not a trivial matter. Secondly, the GWAS variant 

may lie in a non-coding region; hence the variant may affect 

gene regulation, and the corresponding effector gene(s) could 

be located far upstream or downstream of the variant [2, 3]. 

Third, GWAS variants are present in all body tissues. Thus, even 

if the effector gene is known, it is not generally a straightfor-

ward affair to determine where in the body the gene may exert 

its effects. In this issue of SLEEP, Lasconi et al. demonstrate an 

approach that simultaneously addresses all of these issues to 

identify effector genes underlying the complex relationship be-

tween sleep and metabolism [6].

The relationship between sleep and metabolism has been 

appreciated for several decades. Observational studies of the 

1990s and early 2000s revealed a small but persistent correlation 

between short sleep duration and obesity across different popu-

lations with differing demographic characteristics, including 

age, sex, and geographic location (reviewed in ref. [7]). Also, re-

searchers noted a correlation between type 2 diabetes (T2D) and 

both short and long sleep duration (reviewed in ref. [8]). Around 

the same time, laboratory experiments in humans revealed that 

sleep restriction contributes to weight gain and misregulation 

of insulin signaling (reviewed in ref. [9]). This work inspired a 

search for potential genetic links between sleep and metabolic 

dysregulation using GWAS approaches.

Recent studies used the data from multiple GWAS to deter-

mine the relationship between sleep/sleep disorders and meta-

bolic traits and disease. Two different analytical techniques were 

applied to genomic variant data: Mendelian Randomization 

(MR) and cross-trait Linkage Disequilibrium Score Regression 

(LDSR). MR leverages the genetic variants significantly associ-

ated with a trait in a GWAS to establish the causal relationship 

between the trait (referred to as an “exposure”) and a target trait 

or disease (referred to as an “outcome”) [10]. For example, using 

MR, insomnia was identified as a previously underappreciated 

risk factor for T2D [11, 12]. Not all MR studies verify the relation-

ships noted in observational studies, however [13]. MR instru-

mental variables (i.e. the genetic variants associated with a trait) 

must meet certain conditions in order for the causal relation-

ships to be valid [10]. The appropriate conditions are not always 

demonstrable and can be obviated by factors such as pleiotropy, 

linkage disequilibrium, selection bias, population stratification, 

maternal/paternal effects, and assortative mating, to name a 

few of the possibilities [10]. Like MR, cross-trait LDSR uses GWAS 

variant data to look for genetic correlations. However, LDSR uses 

the effects of all genetic variants tested, including those that do 

not reach statistical significance, assigning an LD score to each 

variant [14]. For example, LDSR demonstrated that insomnia 

and long sleep duration were genetically correlated with T2D 

[11, 15]. Significant genetic correlations indicate a shared gen-

etic architecture between sleep and these metabolic traits, but 

which genes are shared remain unknown using this strategy. 
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Thus, both MR and LDSR have been instrumental in the iden-

tification of important relationships between sleep and other 

complex traits but as they rely on the genomic variant infor-

mation, they carry over the limitations from that information, 

in particular the difficulties in localizing effector genes from 

non-coding variants and in discovering the relevant tissue sub-

strates mentioned earlier.

Lasconi et al. use an assessment of the genetic correlations 

between sleep and metabolic traits from GWAS summary data as 

a starting point. They apply the published data for insomnia [11], 

long and short sleep duration [15], and chronotype [16] to estab-

lish the genetic correlation between sleep and metabolic traits 

including T2D [17], anthropometric traits [18–20], and traits re-

lated to insulin signaling [21] using LDSR. They confirm genetic 

correlations found by others and extend these data to find new 

genetic relationships among sleep and metabolic parameters.

In the next stage, Lasconi et  al. bring in their innovative 

strategy for identifying effector genes and the tissues of the 

body where these effects might occur [6, 22–24]. Importantly, 

they hypothesize that genetic variants associated with sleep 

phenotypes may affect metabolism through the cells forming 

the pancreatic islets of Langerhans [6], small groups of cells in 

the pancreas that release metabolic hormones into the blood-

stream [25]. Lasconi et al. focus on two of the five different types 

of cells found in the islets: the α cells, which release glucagon, 

and the β cells, which release insulin [25]. These cells are critical 

to the maintenance of glucose homeostasis in the body [25].

They then tested the idea that pancreatic islet cells may 

harbor the effector genes of sleep-associated loci. Using the gen-

omic variants identified from the insomnia, sleep duration, and 

chronotype GWAS, they identified additional single nucleotide 

polymorphisms (SNPs) in the genome in high linkage disequi-

librium with the sleep variants (i.e. r2 > 0.8). This gave them a 

list of proxy SNPs. Next, they overlapped proxy SNPs with chro-

matin locations in the α and β cells identified using the Assay for 

Transposase-Accessible Chromatin with sequencing (ATAC-Seq). 

ATAC-Seq uses a hyperactive transposase to cut DNA and add 

adapter tags used for sequencing. Because the transposase does 

not cut DNA occupied by histones or transcription factors, ATAC-

Seq identifies regions of open chromatin presumed to be tran-

scriptionally active [26]. Thus, this strategy reduced the number 

of sleep-associated variants under consideration to those that 

mapped to open chromatin [24]. Partitioned LDSR revealed that 

the heritability enrichment of sleep traits in both the α and β cells 

was equivalent to that of human embryonic stem cells (hESC)-

derived hypothalamic-like neuronal cells used as a positive con-

trol. The authors then examined the overlap of proxy SNPs within 

ATAC-Seq locations with putative interacting chromatin sites 

identified using Capture C.  As Capture C maps regulatory ele-

ment interactions to the promoter regions of known genes, the 

effector genes could then be mapped. The proxy SNPs mapped to 

open promoters corresponding to 76 effector genes in the α cells, 

and 63 effector genes in the β cells, which they characterized fur-

ther with enrichment gene ontology analyses. Interestingly, some 

of the effector genes had previously known roles in metabolism. 

These putative effector genes link sleep GWAS loci to metabolism.

The Lasconi et  al.’s study identifies putative effector genes 

underlying the relationship between sleep and metabolism that 

manifest in the α and β cells of the islets of Langerhans. As the 

authors note, their discovery merits further investigation of the 

role of these effector genes in α and β cells. Verification strat-

egies might include some of the authors’ previous approaches in 

human cell cultures [24], but additional strategies incorporating 

tools from model organisms are another possibility [1, 3]. The 

authors demonstrated that their approach is generalizable to 

other tissues and diseases, as they previously applied it to study 

bone mineral density [24] and inflammatory bowel disease [23]. 

This suggests that one only need look in other tissues to find 

additional effector genes that are the targets of sleep-associated 

loci. However, the formation of chromatin structures is specific 

to both cell type and developmental stage [27], and while sur-

veys in model organisms have found many body tissues affected 

by sleep loss [28, 29], the full suite of cell types impacted by sleep 

loss and sleep disorders remains unknown. A future challenge 

is to determine which additional cell types may be the targets of 

sleep-associated loci. The Lasconi et al.’s study is an advance in 

the study of the connection between sleep and metabolism and 

signifies an important addition to the evidence that the effects 

of sleep and circadian-associated loci are not confined to the 

brain, but manifest in other parts of the body as well.
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