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Abstract

Sleep stage classification is an important tool for the diagnosis of sleep disorders. Because sleep staging has such a high 

impact on clinical outcome, it is important that it is done reliably. However, it is known that uncertainty exists in both 

expert scorers and automated models. On average, the agreement between human scorers is only 82.6%. In this study, we 

provide a theoretical framework to facilitate discussion and further analyses of uncertainty in sleep staging. To this end, we 

introduce two variants of uncertainty, known from statistics and the machine learning community: aleatoric and epistemic 

uncertainty. We discuss what these types of uncertainties are, why the distinction is useful, where they arise from in sleep 

staging, and provide recommendations on how this framework can improve sleep staging in the future.
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Introduction

Since the publication of the Rechtschaffen and Kales (R&K) 

manual in 1968, sleep staging has become standardized [1]. In 

the R&K manual, a polysomnography (PSG) measurement is div-

ided into segments, or epochs, of 30 seconds in length. A human 

scorer then visually classifies each epoch into one of the seven 

sleep stages: wake, stage S1–4, REM (rapid eye movement), and 

movement time. While the R&K standard was widely used for 

nearly 40 years, three important criticisms were raised: the R&K 

standard is based only on young and healthy adult participants, 
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Statement of Significance

Aleatoric and epistemic uncertainty are used to address two challenges in the annotation of sleep structure: the relatively 

limited inter-rater agreement between sleep-scoring experts, and the apparent upper bound on accuracy for automated 

sleep-staging models. The distinction between these types of uncertainty has not been formally introduced to sleep sta-

ging but holds several advantages. The framework highlights where resources should be spent to reduce uncertainty and 

compares the pros and cons of human vs automated scoring. Most importantly, it allows for experts working on sleep 

staging to look beyond only inter-rater agreement and accuracy toward a more probabilistic outlook.
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there is no clinical difference between S3 and S4, and the transi-

tion rules leave a lot open to subjective interpretation.

In response to these critiques, the American Academy of 

Sleep Medicine (AASM) manual was introduced in 2007 [2]. The 

AASM manual uses only five sleep stages: Wake (W), REM, and 

non-REM sleep (N1, N2, and N3). S3 and S4 from the R&K rules 

were merged into N3, and “movement time” was disregarded. 

Moreover, clearer rules regarding the transitioning between 

sleep stages were established, and recommendations for sam-

pling rates and filter settings for the PSG were given.

With the introduction of the AASM manual, interscorer 

agreement increased [3, 4]. Currently, the overall agreement be-

tween expert scorers using the AASM criteria is around 82.6%, 

with a Cohen’s kappa of 0.76 [5, 6]. The agreement of a single 

scorer against a panel can vary. For example, Stephansen et al. 

[7] analyzed the individual scoring of six scorers against the 

group consensus for the Inter-scorer Reliability Cohort [8]. The 

biased accuracy had a lower limit of 74.1% and an upper limit of 

85.4% (with a mean of 81.3%), showing that some scorers tend to 

agree more with the group consensus than others.

Moreover, the interscorer agreement is not uniform across all 

sleep stages. For example, in the study performed by Rosenberg 

and van Hout, REM stage agreement was as high as 90.5%, while 

agreement on N1 was only 63.0%. Interestingly, no correlation 

was found between the amount of agreement in an epoch and 

whether or not said epoch was a transition epoch (i.e. least one 

of its neighbors was scored differently). Furthermore, a large 

group of varied scorers performed just as well as a small group 

of highly trained experts. Leading Rosenberg and van Hout 

to conclude that a basic understanding of the AASM rules is 

enough to produce competence, and a search for excellence may 

not be fruitful.

Next to human scorers, machine learning (ML) models that 

classify PSGs (or surrogate measurements) into sleep stages, 

have recently received great interest and many advancements 

have been made with regard to classification performance [7, 

9–13]. Currently, the state-of-the-art accuracy compared to ex-

pert scoring is around 85% [14]. To arrive at this estimate, Fiorillo 

et al. reviewed 14 studies, the vast majority of which only com-

pared to a single annotation per sleep recording. Only 2 out 

of 14 studies performed validation on multi-annotated data, 

including Stephansen et  al. [7]. Comparing automated scoring 

systems against individual annotations has limitations due to 

the aforementioned interscorer disagreement and comparing to 

panels of scorers might be more robust to this effect [15, 16].

Moreover, it seems that ML models are reaching their upper 

limit in accuracy. For example, in a recent comparative study, 

it was found that different state-of-the-art models achieved 

similar performance on a pediatric sleep staging challenge, even 

making similar mistakes [17]. This begs the question, should a 

continued push for accuracy really be the main goal of auto-

mated sleep staging? If the inter-rater agreement between 

human scorers is only 82.6%, does it then make sense to strive 

for a higher and higher accuracy? We believe that, while ac-

curacy is indeed very important, ML models should also explore 

the ambiguity in the way humans score a PSG.

In our opinion, both the limited inter-rater agreement of 

human scorers and the apparent upper limit on the accuracy 

of ML models can better be understood through the lens of un-

certainty analysis. To that end, we shall introduce two variants 

of uncertainty known from statistics and the ML community: 

aleatoric and epistemic uncertainty [18, 19]. While epistemic un-

certainty can be resolved through additional training or more 

diverse data collection, aleatoric uncertainty is inherent to a 

specific measurement setup and cannot be reduced. By split-

ting uncertainty in these two forms, we can explain why both 

humans will never reach 100% inter-rater agreement and ML 

models will never reach 100% accuracy. Because while they are 

both able to lower their epistemic uncertainty through add-

itional training and expertise, their aleatoric uncertainty will 

never diminish.

This point of view may seem defeatist at first: simply blame 

aleatoric uncertainty for the residual inter-rater disagreement 

and for the imperfect accuracy of ML models, to then do nothing 

about it. However, we believe that this view on uncertainty in 

sleep staging is actually extremely helpful. It allows expert 

scorers and ML professionals to focus on the uncertainties that 

they have and what steps they can take to reduce them. For ex-

ample, while aleatoric uncertainty cannot be reduced given a 

specific measurement setup, different measurement setups 

might result in lower aleatoric uncertainty.

The rest of the study will be structured as follows. First, we 

shall elaborate on the concepts of aleatoric and epistemic un-

certainty. Second, we will explore the different sources of alea-

toric uncertainty. Third, we will analyze epistemic uncertainty 

in both human scorers and ML model. Fourth, we will give re-

commendations about how this view of uncertainty can help 

improve sleep medicine in the future.

Uncertainty

For this study, we define uncertainty as “a state of limited infor-

mation where it is impossible to exactly describe some phenom-

enon.” Leveraging this definition for sleep stage classification, 

uncertainty refers to the lack of information, such that it is im-

possible to choose the correct sleep stage 100% of the time. In 

other words, there is ambiguity or variability in what sleep stage 

should be chosen.

We will refer to both the human scorer and automated clas-

sifier as a model. For the study, a model is a system or process 

that can be used to determine to which class the data belongs. 

This process can be described by decision boundaries or rules, 

for example, an epoch is scored as N3 if more than 20% consists 

of slow wave activity.

An example of a classification model is shown in Figure 1. 

It shows a binary classification problem, for example, wake 

vs sleep. In light blue and yellow, we show fictional data dis-

tributions of the two classes, which are generally unknown 

in practice. However, getting an idea of these distributions by 

estimating them, helps us in understanding and interpreting 

the recorded data. We show such estimation in dark blue and 

yellow, with the edges representing the decision boundaries for 

the corresponding classes. Situations may arise where decision 

boundaries are fuzzy, for example, in the green area, due to the 

presence of non-discriminative features or ambiguous classi-

fication rules. We can now see four different cases of (un)cer-

tainty emerging: (A) no uncertainty, (B) aleatoric uncertainty, 

(C) epistemic uncertainty, and (D) data point outside of the 

current task.

Aleatoric uncertainty (from the Latin alea, meaning chance 

or die) refers to uncertainty that arises from the random or 
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ambiguous nature of data and their measurements. Because 

of this, no model will be able to get rid of aleatoric uncertainty 

once a specific measurement has been performed. For example, 

in sleep, this happens when multiple features of different sleep 

stages are present in an epoch, and even the most trained ex-

perts disagree on proper classification. Moreover, artifacts and 

noise could hamper classification. This disagreement/uncer-

tainty will not diminish through additional training of the ex-

perts, the ambiguity is simply inherent.

Note that aleatoric uncertainty is fixed once a specific 

measurement setup is chosen. As an example, a patient’s age 

is introducing aleatoric uncertainty if the model does not have 

access to this information. On the other hand, when the model 

does take age into account (i.e. it is “measured” in the chosen 

setup), it is not a source of aleatoric uncertainty anymore.

Epistemic uncertainty (from the Greek episteme, meaning know-

ledge) refers to uncertainty that arises from a lack of knowledge 

about the data or the optimal model. This type of uncertainty 

can be mitigated, by supplying the model with more experi-

ence, additional training data, or in the case of ML by leveraging 

higher-capacity models. In sleep, epistemic uncertainty may 

arise when an inexperienced scorer tries to score a particu-

larly difficult epoch. However, by consulting the AASM rule book 

or more senior colleagues, this (epistemic) uncertainty can be 

reduced.

While Figure 1 shows a binary classification example, we can 

extend this uncertainty view to 5-class sleep staging with both 

human and computer models. The four cases of (un)certainty, as 

introduced in Figure 1, are also shown in Figure 2 with a sleep 

staging example. Here we can see how two human scorers and 

one ML model might react under the different cases. For ex-

ample, in the case of aleatoric uncertainty (B), the models might 

all disagree on the class, but they all do agree that it is either N2 

or N3, and not say “Wake.” Moreover, if the computer model has 

not been programmed to deal with faulty measurements (D), it 

will still provide an output, while humans will see that this does 

not make sense.

We would like to stress that aleatoric and epistemic un-

certainty are distinct from systematic and random errors. 

Systematic and random error refer to (measurement) errors 

made due to, for example, wrongly calibrated equipment, while 

the aleatoric–epistemic uncertainty view considers the entire 

pipeline of sleep stage classification, from PSG measurement to 

human decision making. Under this lens, random and systemic 

errors are parts of aleatoric uncertainty.

Sources of Aleatoric Uncertainty

Several sources of aleatoric uncertainty in sleep staging can 

be identified as shown in Figure 3. Note that the type of model 

Figure 1. Aleatoric vs epistemic uncertainty. Four cases of uncertainty for a 

binary classification model, for example, wake vs sleep. Shown are the data dis-

tributions as well as the decision boundaries. (A) no uncertainty, (B) aleatoric 

uncertainty, (C) epistemic uncertainty, and (D) data point outside of the current 

task.

Figure 2. Examples of uncertainty in sleep. Examples of the different cases of 

uncertainty in sleep shown here are how two hypothetical human scorers and 

one machine learning model would score the PSG data. (A) no uncertainty, (B) 

high aleatoric uncertainty, (C) epistemic uncertainty, and (D) data point outside 

of the current task.

Figure 3. Sources of aleatoric uncertainty in sleep split into biological factors 

(i.e. relating to the participant themselves) and measurement factors (i.e. re-

lating to the way we measure sleep).
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(human or ML) has no impact on aleatoric uncertainty, it is en-

tirely inherent to the biological process of sleep (see section 

“Biological factors”) and the way that it is measured (see section 

“Measurement factors”).

Biological factors

In this section, we show how several biological factors will affect 

the measurement and scoring of sleep stages. As we alluded to in 

the previous section these factors induce aleatoric uncertainty 

if the model is not leveraging measurements of these factors. If 

the (only) measurement we perform is a PSG, then the model 

cannot control for these factors. However, if we perform add-

itional measurements, such as asking somebody’s age or medi-

cine usage a model may adjust for these factors while scoring. 

Possibly remaining uncertainties in sleep staging, related to 

these factors, have then become part of epistemic uncertainty.

Age. The age of the participant has an important effect on the 

structure of electroencephalogram (EEG) signals. Notably, as 

the neural connectivity decreases with age, it is less likely that 

neurons will fire synchronously. Because an EEG measurement 

never records single neurons, but always the aggregate behavior, 

the more out of phase the neurons fire, the lower the amplitude 

of the waves that are measured. For example, slow wave amp-

litudes are much lower in older participants than they are in 

younger participants which can lead to disagreement on how to 

apply the rules for N3 sleep in participants across varying age 

groups.

Drugs. Drugs that act on the central nervous system (CNS) (e.g. 

alcohol, opioids, sleep medication, antidepressants, and anti-

psychotics) will affect the PSG measurement. Due to this, fea-

tures of sleep might present differently or not at all.

Pathologies. Similar to drugs, certain pathologies will affect 

the workings of the CNS or the connection from the CNS to 

other responses, for example, heart rate. Think, for example, 

of Parkinson’s disease or epilepsy. Moreover, brain lesions or 

trauma can also affect the PSG recording. Because pathologies 

can fog the features of sleep in the PSG, correct application of 

the scoring rules may be hampered.

Local  sleep. Recently, the concept of “local sleep” has emerged 

[20–22], where instead of thinking about sleep as being a homo-

geneous process across the entire brain, different brain regions 

can be in different sleep stages. Contradictory features of dif-

ferent sleep stages can therefore be observed at the same time, 

making it hard to identify the correct sleep stage. One can even 

ponder the question if there is indeed such a thing as “one cor-

rect sleep stage” over the entire brain.

Measurement factors

Electrodes. The placing of electrodes is crucial to acquire the right 

information to do sleep staging. For example, alpha activity is 

typically higher in the occipital measurements, whereas delta 

activity is higher in the frontal electrodes. In a perfect world, we 

would therefore measure the EEG over the entire scalp, but we 

can only use a limited number of electrodes at the same time. To 

accommodate the placement of electrodes, the AASM manual 

specifies which standard locations to use. However, sleep sta-

ging can still be performed with single lead measurements. In 

this case, however, crucial information can be lost about the EEG 

activity on other regions of the scalp.

Because the electrodes are the interface between skin and 

wires, and the amplitude of EEG waves is so low, it is of critical 

importance that a good conductivity is reached, which is often 

done with the application of gels. The type, quality, and amount 

of the gel can have big consequences for the quality of the meas-

ured signals.

Interference. Several sources of interference and noise can be 

present in a PSG measurement, for example, mains interfer-

ence, electrical noise interference, and baseline wander of the 

electrodes. To counteract this noise, the AASM specifies the use 

of a couple of filters. Notably, a high-pass filter at 0.3 Hz and a 

low-pass filter at 35 Hz for EEG, which do not act on the frequen-

cies of interest (0.5–20 Hz).

Nevertheless, additional artifacts and noise sources can be 

present, for example, movement artifacts and electrical noise 

interference. Because the electrical response of movement arti-

facts is much larger than the EEG, it will bury the signal and 

make it impossible to score. Electrical noise interference is 

caused by other nearby wires, as they act like antennas and get 

electrically linked with each other. Even when filtering out this 

electrical noise interference, it can still have a negative impact 

on the signal quality, and therefore hamper correct scoring.

Epoch definitions. According to the AASM standard, an entire epoch 

is scored as one sleep stage. Conventionally, this epoch is 30 sec-

onds long, but other window lengths can be used in ML models. 

The transitioning of one sleep stage to another is, however, un-

likely to always happen exactly at the boundaries of 30 seconds 

windows (if such “hard” transitioning indeed occurs). By scoring 

an entire epoch as one sleep stage, we are thus aggregating fea-

tures of (potentially) multiple sleep stages. Additionally, not 

only the epoch length matters, but where we define the first 

boundary. A  constant offset to all boundaries by, for example, 

10 seconds can result in a different scoring. Moreover, if a sleep 

stage is significantly shorter than the window length, we can 

miss it (or must ignore it according to AASM) in our analysis [23]. 

We believe that the aggregation of sleep stages over an epoch 

contributes to a significant source of aleatoric uncertainty.

Surrogate measurements. While the clinical standard for quan-

titatively measuring sleep is still considered a PSG, it is now-

adays also possible to use surrogate measurement techniques 

(e.g. photoplethysmography (PPG) or actigraphy). While impos-

sible for a human to score, ML models can be used to acquire 

hypnograms from these surrogates [24–26]. This is done by 

teaching the model to mimic the AASM scoring on a synchron-

ously acquired PSG.

The reason that surrogate measurements can be used for 

sleep scoring is because there is a correlation between sleep 

stages and the autonomic activity of, for example, the heart. 

However, the exact mapping from the CNS to autonomic re-

sponses is unknown and potentially participant-dependent. All 

the biological factors mentioned above can have a detrimental 

impact on the mapping between surrogate measurements and 

sleep stages. For example, older participants will show a de-

crease in the autonomic expression of parasympathetic ac-

tivity. Moreover, some medications blunt cardiac expression of 
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autonomic activity, and certain disorders will also sever this 

link. Due to fact that it can be so hard to quantify what the 

link is between autonomic activity and sleep stages and also to 

quantify the quality of this connection, one can expect to have 

lower accuracies and higher uncertainties when using surrogate 

measurements.

Sources of Epistemic Uncertainty

Several sources of epistemic uncertainty in sleep staging can 

be identified as shown in Figure 4. In this section, we shall dis-

cuss each source, and how it relates to both human scorers and 

ML models.

Relation to prior belief/context

A human scorer is (implicitly) biased by its prior beliefs when 

assigning sleep stages, for example, due to the demographics of 

the patient, expected disorder(s), or at what point in the night 

the data was recorded. The prior in ML models is often implicit 

in the parameters and architecture, making it difficult for de-

signers to know whether the (learned) prior is correct. A well-

known example of a prior of ML models is the tendency to 

favor classification for N2 sleep, as that sleep stage is the most 

common during the night and therefore over-represented in the 

dataset used for training the model.

Quantifying the effects of prior beliefs can be difficult, both 

in human scorers and ML models. It is therefore important 

to note what type of patients a human scorer typically sees, 

or on which dataset an ML model has been trained. The prior 

belief over sleep stages may be invalid for a patient that does 

not fit the group of patients on which the model was trained. 

Additional training or retraining could be a solution for when 

a model encounters a new type of patient. For example, both 

human and ML models can be retrained for the specific hospital 

at which they are used, to ensure that it has the correct prior be-

liefs for the patients’ group(s) typically seen there.

Inter-model variability

Another source of epistemic uncertainty is the fact that no two 

models are the same. It is important to stress here is that we 

consider a model at one fixed point in time, thus even inter-

temporal change can cause epistemic uncertainty. We distin-

guish three inter-model variabilities, from macro to micro levels.

Inter-institutional variability. The culture of an institution can have 

a big impact on how the AASM rules are interpreted and applied 

by human scorers. For example, one hospital might interpret the 

AASM rules a lot more strictly than another one. The effect of 

culture and workplace environment could be alleviated through 

programs, such as the Inter-Scorer Reliability Assessment 

System, through which the scoring of different institutions is 

brought closer together.

Inter-model variability. Not only can there be differences among 

institutions, but individuals within those institutions can also 

differ. This reflects someone’s scoring style; their own signa-

ture in sleep staging. By comparing work with colleagues and 

aligning workflows, these differences can be alleviated.

Inter-temporal variability. Over time, models can also change. If 

you show the same PSG to a human scorer today and tomorrow, 

you will probably get a different scoring. Moreover, larger differ-

ences can appear if you increase the time difference between 

the moments of scoring.

Model correctness

The question of model correctness for human scorers comes 

down whether they have learned and implemented the AASM 

rules correctly. As shown by Rosenberg and van Hout [5], a basic 

understanding of the AASM rules is already enough to produce 

competence, and additional training may not be fruitful. In other 

words, human scorers are correct most of the time, and this 

source of epistemic uncertainty does not really exist for them.

The problem of model correctness or optimal model choice 

is much more a challenge in ML. We have to ask ourselves, out 

of the infinite set of models out there, have I chosen the cor-

rect one, or at least a good one? A systematized way to search 

for the best model would be neural architecture search [27]. 

However, to the best of our knowledge, neural architecture 

search has so far never been used for automatic sleep stage 

classification models. Even the question: Is my model at least 

“good enough?” can be difficult to answer for computer models. 

As ML models can easily fall for pitfalls such as overfitting and 

shortcut learning. Moreover, we can only empirically test if 

our model generalizes to an unseen dataset, but we can never 

prove it for all unseen data. Lastly, even the definition of “good 

enough” is ambiguous.

Atypical data

Missing/faulty data. While it is easy for a human to detect when 

a measurement has gone wrong, for example, a disconnected 

Figure 4. List of sources of epistemic uncertainty in sleep. Icons of a human 

scorer or computer model are shown for each of the sources when they are rele-

vant, for example, “relation to prior belief/context” applies to both, while “cir-

cumstances” only apply to humans.
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electrode, this can be difficult for an automated model to do. 

Especially if no special care is taken to give the automated 

model the ability to say “I do not know” or “Something went 

wrong”; in these cases, the automated model will still give us an 

answer even if it should not.

Out-of-distribution  data. Much harder for both humans and ML 

models is the ability to detect out-of-distribution (OOD) data. 

With OOD data, we here refer to measurements that are un-

like any the model has seen before. For a human, this can en-

compass data that is so different from what they usually see, 

and where they do not know how best to apply the AASM rules, 

while for an ML model, this entails data that differs too much 

from the training data. It is critical that the model is able to rec-

ognize when data are OOD, so that they may ask for a second 

opinion. This way, they could even learn from the example and 

reduce their epistemic uncertainty the next time that they en-

counter this type of data.

Circumstances

Circumstances, such as the mental and physical well-being 

of the expert scorer, can have a detrimental effect on per-

formance. While ML models are not affected by such factors, 

human performance will deteriorate due to, for example, 

sleepiness, stress, and time pressure. To reduce this source 

of epistemic uncertainty, it is important that scorers can do 

their work without (too much) time pressure or stress placed 

upon them.

Discussion

We have reviewed two types of uncertainty in sleep staging: 

aleatoric and epistemic uncertainty. While the aleatoric sources 

of uncertainty are measurement setup-dependent, but model-

independent, the epistemic sources are model-dependent, and 

thus differ between human scorers and ML models. This study 

outlines the different sources of uncertainty in sleep staging 

and how they may be alleviated.

As a consequence of aleatoric uncertainty, human scorers 

will never reach 100% inter-rater agreement, and ML models 

will never reach 100% accuracy with respect to a set of expert 

labels. It, therefore, does not make sense to solely focus on and 

promote these metrics. Instead, it may be more fruitful to ana-

lyze and capture existing uncertainties in sleep staging, and 

where they come from. If the sources of uncertainty are well 

understood, it becomes easier to estimate how (un)certain a 

given sleep scoring is. Such uncertainty estimates can greatly 

increase the confidence of the end-user in the hypnogram, es-

pecially in the case of automated scoring. In addition, uncer-

tainty estimates in sleep diagnostics could be extended to other 

outcomes of PSG besides sleep staging, for example, applied to 

apnea-hypopnea index (AHI) estimates. In the Supplementary 

Material, we briefly review what work has already been done 

and provide some future perspectives for both expert scorers 

and automated models.

All current studies of the inter-rater agreement only inves-

tigate the agreement on an individual level between scorers, or 

between the individual and the majority vote of the entire group 

of scorers. To the best of our knowledge, no studies exist that 

explore the inter-rater agreement between panels of scorers, 

even though, for example, the AASM gold standard for scoring 

is based on a consensus formed by a panel of expert scorers. It 

would be an interesting opportunity for future research to inves-

tigate the inter-panel agreement. Intuitively, one would expect 

that agreement between panels would be higher, as a group of 

scorers can collectively lower their epistemic uncertainty.

Furthermore, because of the substantial inter-rater dis-

agreement between human scorers, it is greatly beneficial to 

compare automated scoring methods to panels of scorers, 

and not just single scorers. One possible approach to do this 

is to compare the prediction of the automated model to the 

majority vote of a panel of human scorers, as is done in the 

studies [7] and [15]. To supplement such a comparison, the au-

thors of the study [7] also compare each scorer individually 

against the majority vote of the panel. This way, they estab-

lish that their automated model agrees with the majority vote 

more, than each separate scorer agrees with the majority vote. 

The authors of the study [15] apply such an approach also to 

statistics calculated from sleep staging, such as AHI. However, 

the authors of the study [16] raise the criticism that such aver-

aging is limited because the distribution of these statistics can 

be skewed and suffer from outliers. Instead, the authors of the 

study [16] model how each statistic is distributed and then 

apply statistical testing to see if the automated predictions 

come from the same population.

Recently, advances in Bayesian ML have enabled for one 

model to yield multiple likely predictions, instead of just one 

point estimate (see the Supplementary Material). However, none 

of the aforementioned methods delves into how to compare 

multiple automated predictions against the multiple ground 

truths of a panel. Such comparisons would be very interesting, 

and should not just involve comparing majority votes. While 

comparing majority votes gives insight into the performance 

of point estimates, it does not establish whether the model 

has captured all scoring “styles” present in the dataset, and 

whether the aleatoric uncertainty of statistics such as the AHI 

is properly estimated. We will leave the question of how to com-

pare multiple automated predictions to that of a panel to future 

research.

Throughout this study, we have made the assumption that 

the current sleep stages as defined by the AASM rulebook are 

in fact the ground truth. However, alternative sleep represen-

tations have also been proposed. For example, the odds ratio 

product [28], data-driven clusters, or continuous representations 

(see Hermans et al. [29] for an overview). These alternative sleep 

staging methods are promising in the regard that they might 

prove to be better representations of the structure of sleep and 

provide physicians with more information. However, additional 

research is needed to prove the clinical application of these 

methods. Moreover, interpretability, especially for data-driven 

clustering, remains a concern. This interpretability issue is often 

resolved by comparing the new sleep stages with the original 

AASM sleep stages. The main message of this study: the utility 

of the distinction between aleatoric and epistemic uncertainty 

stays applicable to these alternative staging methods. It is bene-

ficial to explore different models working on the same data, as 

this lies at the heart of reducing epistemic uncertainty in sleep 

staging.
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Conclusion

In this study, we offer a perspective on sleep stage classification 

through the lens of aleatoric and epistemic uncertainty analysis. 

We discussed the sources of these two types of uncertainty for 

both human scorers and automated models. The sources of 

aleatoric uncertainty do not depend on the choice of model, as it 

is inherent to the measurement and patient. On the other hand, 

the sources of epistemic uncertainty do differ between human 

scorers and automated models, but they can still be united into 

broad categories, allowing us to see the pros and cons of both 

types of scorers. Moreover, we recommend that instead of trying 

to fruitlessly achieve the highest possible accuracy or increase 

inter-rater agreement through additional training, we should 

create tools that accurately reflect the model’s uncertainty. If 

well calibrated, the models of the future could accurately split 

aleatoric and epistemic uncertainty, giving us certainty about 

uncertainty in sleep staging.

Supplementary Material

Supplementary material is available at SLEEP online.
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