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Abstract

Study Objectives: A critical barrier to successful treatment of circadian misalignment in shift workers is determining circadian 

phase in a clinical or field setting. Light and movement data collected passively from wrist actigraphy can generate predictions of 

circadian phase via mathematical models; however, these models have largely been tested in non-shift working adults. This study 

tested the feasibility and accuracy of actigraphy in predicting dim light melatonin onset (DLMO) in fixed night shift workers.

Methods: A sample of 45 night shift workers wore wrist actigraphs before completing DLMO in the laboratory (17.0 days ± 10.3 SD). 

DLMO was assessed via 24 hourly saliva samples in dim light (<10 lux). Data from actigraphy were provided as input to a mathematical 

model to generate predictions of circadian phase. Agreement was assessed and compared to average sleep timing on non-workdays as 

a proxy of DLMO. Model code and an open-source prototype assessment tool are available (www.predictDLMO.com).

Results: Model predictions of DLMO showed good concordance with in-lab DLMO, with Lin’s concordance coefficient of 0.70, which 

was twice as high as agreement using average sleep timing as a proxy of DLMO. The absolute mean error of the predictions was 

2.88 h, with 76% and 91% of the predictions falling with 2 and 4 h, respectively.

Conclusion: This study is the first to demonstrate the use of wrist actigraphy-based estimates of circadian phase as a clinically 

useful and valid alternative to in-lab measurement of DLMO in fixed night shift workers. Future research should explore how 

additional predictors may impact accuracy.

Key words:  circadian rhythm; night shift work; actigraphy; mathematical model

Statement of Significance

This study takes important steps in translating a mathematical model of the circadian clock for use as a clinical assessment for 

circadian medicine. Results indicate that data collected via wrist actigraphy can be used to generate estimates of circadian phase 

that show good concordance with gold standard dim light melatonin onset in fixed night shift workers with extreme circadian dis-

ruption. Because actigraphy is already a recommended practice for the assessment of sleep–wake disturbances in shift work, imple-

mentation of this tool would require minimal change to existing practices. Future directions for model improvement are discussed.
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Introduction

As a contemporary society, we have leveraged technological 

innovations to surpass prior limitations of the natural light–

dark cycle. Electrical lighting has allowed us to extend work 

far into the night, thus enabling the provision of around-the-

clock services including medical care (e.g. nurses), safety and 

security (e.g. police), and swift delivery of consumer goods (e.g. 

truck drivers). However, night shift work exposes employees to 

circadian misalignment, which significantly increases risk for 

adverse health and safety outcomes including shift work dis-

order [1, 2], vehicular accidents [3], cancer [4], obesity [5], and 

cardiovascular morbidity and mortality [6, 7] ((for reviews, see 

[8, 9]). Moreover, night shift workers have very limited access to 

interventions that mitigate these risks.

One critical barrier to implementing interventions targeting 

circadian realignment (e.g. timed bright light exposure) is the 

lack of clinically feasible approaches that determine circa-

dian phase in a given night worker. Without clinically feasible 

measures of circadian phase, health-care providers are unable 

to ascertain the necessary parameters to administer interven-

tions with appropriate precision (e.g. the degree/severity of mis-

alignment, appropriate timing, duration, and intensity of light 

therapy), or even to assess if such interventions are appropriate 

for a given patient. Standard laboratory measures of circadian 

phase (e.g. dim light melatonin onset [DLMO]) are time and re-

source intensive, even when adapted for home collection [10]. 

In particular, DLMO assessment in shift workers is especially 

difficult because it requires measurement over 24-h (i.e. three 

to four times longer than in non-shift workers) to ensure an ad-

equate window to capture the full range of DLMO possible [11, 

12]. As such, there has been significant interest in the develop-

ment of alternatives to DLMO [13–16]. Many of the alternatives 

under development extract biomarkers of circadian phase from 

biological specimens. These procedures are often more invasive 

than DLMO (e.g. repeated blood samples and tissue biopsies), are 

currently cost-prohibitive, and carry additional limitations par-

ticularly with respect to obtaining circadian phase in night shift 

workers.

One promising approach to measuring circadian misalign-

ment in the clinic or field is a novel method of processing data 

collected via wrist-worn actigraphs. There are important advan-

tages to this approach. First, it leverages actigraphs as an existing 

technology that is familiar, readily available, and increasingly 

utilized in sleep disorders centers around the world. Critically, 

actigraphic measurement of sleep–wake activity (commonly 

supplemented with light data) is already indicated in the diag-

nostic criteria for Shift Work Disorder (see diagnostic criteria C) 

in the International Classification of Sleep Disorders—3rd edi-

tion [17]. Thus, the use of actigraphy would require minimal 

changes to recommended practice and would enhance the value 

of standard assessments already in-place. Wrist actigraphy is 

also a relatively passive and noninvasive method of data col-

lection, which increases real-world feasibility and allows for 

tracking over long periods of time. Finally, sleep tracking using 

consumer wearables is already commonplace, further empha-

sizing the potential feasibility and scalability of this approach.

Estimating circadian phase with actigraphy and photometry 

(i.e. with light sensors) in this manner leverages laboratory-

validated mathematical models of how the human circadian 

clock responds to light. Recent research has begun testing the 

validity of these models outside the laboratory. For example, 

Woelders et  al. [18] demonstrated that light and activity data 

from Actiwatches were able to predict DLMO with strong ac-

curacy (R2 = 0.71, standard deviation in the predictions = 1.1 h) 

in healthy day workers with varied self-reported chronotype. 

Another study examined regular and irregular undergraduate 

sleepers, and found that 81% of the predicted DLMO using light 

activity from Actiwatches fell within ± 2  h of observed DLMO 

[19]. Finally, Stone et  al. [20] followed 25 health-care workers 

wearing Actiwatches through a 3–5 day transition from the day 

shift to the night shift, with pre- and post-transition measure-

ments of urinary 6-sulphatoxymelatonin (aMT6s) in the field. 

Results showed that 92% of model-predicted phase fell within 

± 2 h (average error of 0.95 h) of the cosinor acrophase fitted to 

aMT6s values.

Importantly, these foundational studies have demonstrated 

that wrist actigraphy with photometry can estimate circadian 

phase; however, clinical translation for the most relevant popu-

lations require validation in samples with significantly greater 

irregularities in sleep–wake schedules and light exposure (e.g. 

significant circadian disruption due to routine displacement 

sleep into the daytime). Indeed, individuals in extant studies 

predominantly followed a diurnal sleep–wake schedule, re-

sulting in a narrower range of circadian phase than fixed night 

shift workers. For example, though Stone et al. [20] included ro-

tating shift workers, the bedtimes at baseline (i.e. before rotating 

onto the night shift) all occurred nocturnally, clustering around 

a 2-h window (10:14 pm to 12:26 am). Melatonin acrophase at 

baseline also occurred within a 4 h range, which is comparable 

to the range of DLMOs found in healthy individuals not engaged 

in shift work [21]. This is likely because night shifts were limited 

to one week per month, thus allowing a diurnal sleep–wake 

schedule 75% of the time. While the range of bedtimes and cir-

cadian phases was wider in the sample of irregular sleepers in 

Phillips et al. [19] (DLMO ranged approximately from 6:00 pm to 

3:00 am), even the most irregular sleeper in that sample—albeit 

likely a late chronotype—slept predominantly at night (i.e. ~90% 

of sleep periods initiated between 12:00 am and 5:00 am).

One consequence of testing in samples with largely diurnal 

sleep–wake schedules is a restricted range in observed DLMOs, 

which may restrict the range of errors in the model predictions. 

For example, prediction errors within 1 or 2  h may be readily 

achieved if the range of DLMOs only clustered within 4  h. 

Moreover, healthy individuals with diurnal sleep–wake sched-

ules are more likely to be entrained and regular, in which case 

a reasonable prediction of DLMO can be achieved with sleep 

diaries and does not require actigraphy and/or photometry. For 

example, Crowley et  al. [22] found that information collected 

via sleep diary in 208 adolescents accurately predicted DLMO 

within ± 1 h for 80% of the sample. In order to validate the use 

of actigraphy and photometry to predict circadian phase in shift 

workers, individuals with extreme circadian disruption due 

to irregular light exposure and sleep–wake schedules must be 

studied. In fact, quantifying the error in such conditions is key 

to translating circadian models for use in real-world clinical set-

tings. Without this initial translational science, the feasibility, 

accuracy, and clinical utility of such an approach will remain 

unknown.

In this study, we tested the viability of wrist actigraphy and 

photometry to estimate circadian phase (i.e. DLMO) in a sample 

of fixed night shift workers. Because night shift workers often re-

turn to nighttime sleep on their days off, these individuals are 
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exposed to highly irregular light schedules and experience some 

of the most extreme circadian disruption in the working popu-

lation. Furthermore, validation under these conditions will also 

test the limits of this method and assess its ability to provide 

clinical information needed for therapeutic interventions in in-

dividuals with severe circadian disruption. Finally, to assess the 

unique contribution of this approach, we also compared how the 

model predictions performed against objective sleep timing on 

non-workdays as a currently accessible proxy of DLMO.

Methods

Participants

Participants were recruited as part of a larger study examining 

the clinical impact of circadian misalignment in night shift 

workers. Recruitment was conducted primarily through flyers 

distributed in the community and as part of a health system-

wide newsletter, which sampled across six major hospitals 

serving the greater Detroit metropolitan area. A  total of 125 

prospective participants completed an initial internet-based 

prescreening survey, and 47 eligible participants were invited for 

an in-person interview with a clinician with expertise in sleep 

medicine. The clinical assessment focused on sleep and mental 

health, including details about shift work and sleep–wake 

schedules, symptoms of insomnia and excessive sleepiness, 

and psychiatric disorders evaluated via the Structured Clinical 

Interview for DSM Disorders (SCID). Presence of sleep and cir-

cadian rhythm disorders beyond shift work disorder (e.g. ob-

structive sleep apnea, restless leg syndrome, and periodic limb 

movement disorder) were determined via both clinical interview 

and an 8-h polysomnography (PSG) at the sleep center.

Study inclusion required working a fixed night shift work 

schedule, which was operationalized as starting between 6:00 

pm and 3:00 am, with shifts lasting between 6 and 12 h. Inclusion 

of 6:00 pm in the start time was targeted for individuals working 

12-h shifts (e.g. 6:00 pm to 6:00 am). Schedules that were better 

characterized as the afternoon/evening shift (i.e. second shift) 

were excluded. Additionally, work shifts had to occur at least 

3 nights per week for a minimum work duration of 1  year. 

Participants had to report a habitual time in bed between 6 and 

9 h to preclude inadequate sleep opportunity as a confounding 

variable. Participants with a medical history of central nervous 

system disorders, sleep disorders, or an unstable major medical 

condition were excluded via either clinical interview, medical 

chart review, or PSG. Use of substances that may interfere with 

any outcome measures in the larger study (e.g. sleep, sleepiness, 

and circadian phase) also resulted in study exclusion; these in-

cluded dependence on alcohol (≥ 4 beverages per day), heavy 

tobacco use (≥ 10 cigarettes per day), recreational drug use, 

medications impacting central nervous system functioning, and 

caffeine use in excess of 5–6 servings (~600 mg) per day.

A final sample of 45 individuals was included for analysis 

in this study following exclusion of one individual due to 

noncompliance with instructions for actigraphy collection and 

one individual due to the presence of obstructive sleep apnea 

diagnosed by PSG. The final sample comprised 82% females 

(n = 37) with an average age of 39.2 ± 10.3 SD (range = 21–64). 

All procedures were approved by the Institutional Review Board, 

and all participants provided informed consent prior to study 

participation.

Procedures

Following enrollment, participants were scheduled for a lab 

visit, and provided with an Actiwatch (Philips Respironics, USA) 

approximately 2 weeks before the lab visit. Participants were in-

structed to wear the Actiwatch at all times with the exception 

of circumstances involving immersion in water (showers, baths, 

swimming, etc.), and to avoid covering up the watch with long 

sleeves or jackets. Written instructions were also provided with 

the watch, and a reminder to begin wearing the watch was pro-

vided 2 weeks prior to their scheduled visit. Participants who re-

scheduled within two weeks of their laboratory visit were asked 

to continue wearing the watch until their rescheduled visit. 

Participants arrived at the lab in the morning following a night 

shift and were provided an 8  h in-lab PSG. Upon awakening, 

participants remained in the lab for 24 h under dim light (<10 

lux), with hourly saliva samples assayed for melatonin (see 

Determining DLMO section).

Determining DLMO

 The daily rhythm of melatonin secretion is a reliable marker 

for circadian phase [23], and was assessed via DLMO based on 

hourly salivary samples for a total period of 24 consecutive hours. 

Samples were collected in a private and sound-attenuated room 

under constant dim light (<10 lux). During saliva collection, all 

participants were asked to remain seated in a comfortable chair 

until an adequate collection of saliva was verified. No food or 

drinks were allowed 10  min prior to saliva sample collection, 

and food items that may interfere with melatonin assays were 

precluded from participants. Between hourly samples, subjects 

were allowed to partake in approved activities, such as reading 

or listening to music. The use of electronics was permitted if 

backlit screens were maintained at <10 lux (based on angle of 

gaze). DLMO was determined using a relative threshold based on 

2 standard deviations above the mean of three samples during 

the biological day (samples were consecutive and the set with 

the lowest consecutive sum was selected). Linear interpolation 

was used to estimate the time at which melatonin concentra-

tion surpassed the threshold.

Saliva samples were collected using a Salivette tube 

(Sarstedt AG & Co., Nümbrecht, Germany) with a cotton insert. 

Participants were instructed to place the cotton insert in their 

mouth by the salivary glands underneath the tongue to sat-

urate the cotton insert with saliva. Samples were submitted 

to SolidPhase, Inc. (Portland, OR) where melatonin levels were 

determined via a radioimmunoassay.

DLMO prediction

DLMO estimation was conducted using a mathematical model 

of the impact of light on the human circadian pacemaker. The 

model was originally created by Kronauer et al. [24], and has 

since been adapted and refined [25–27]. We compared the per-

formance of existing models across multiple populations and 

selected the model with the best accuracy for analysis in this 

study (i.e. the higher-order model with the non-photic compo-

nent) [28]. It is important to note that these models were de-

veloped based on empirical data using core body temperature 

minimum (CBT
min

), and thus are designed to output predictions 

of CBT
min

. DLMO predictions were extracted by subtracting 7 h 

from the model output in order to estimate DLMO from CBT
min

 

[29, 30].
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Input choice

Until recently, most models of circadian rhythms have solely 

used light data as input into the mathematical model. As 

others have argued [31], light measurement from wrist-worn 

devices may not accurately reflect the input of light into the 

central circadian pacemaker (i.e. the suprachiasmatic nucleus) 

via the retina. Additionally, light data collected from wrist 

actigraphs can easily be covered by apparel (e.g. long sleeves), 

and have variable sensitivity across the full range of visible 

light intensity. In contrast, activity data measured via tri-axial 

accelerometry are not prone to these disturbances. As such, 

some approaches have begun to supplement model predic-

tions with activity data. The most recent approaches include 

producing initial model predictions using only light data, and 

then adjusting predictions with an additional statistical model 

covarying for phase markers of activity (e.g. activity acrophase) 

[18].

Critically, our recent work has demonstrated that activity 

data from wrist actigraphy can be used in existing models to 

produce robust estimates of circadian phase that may even out-

perform predictions using light data alone (see Supplementary 

Table S1). As light is known to be the strongest zeitgeber, this 

finding likely reflects the aforementioned limitations of using 

light from the wrist as a proxy for light to the circadian system 

via the retina. Secondly, activity may also serve as nonphotic 

entrainment (for a more in-depth discussion, see [28]). Based on 

this work, we opted for an approach that combined both light 

and activity history, with additional sensitivity analyses using 

only light and only activity data. In the combination approach, 

the default input to the model was light measurement (in lux); 

however, activity data was substituted when light appeared to 

be obstructed (i.e. presence of activity despite low light levels 

[activity count > 0 and lux < 100]). For the source code of this im-

plementation, see https://github.com/ojwalch/predicting_dlmo). 

A more detailed description of model specifications is included 

in the Supplementary Materials.

Initial conditions

Choosing appropriate starting conditions is a critical step for 

simulating the circadian clock model with an individual’s light/

activity history. We opted to use the estimated average DLMO in 

individuals entrained under normal living conditions (9:00 pm) 

[21]. This allows for a standardized approach and increases the 

translational utility for clinical use.

Sleep timing as a proxy of DLMO

To evaluate the unique contribution of using model predictions 

of DLMO, we also compared results against the best proxy of 

DLMO that is currently accessible in the clinic. Given that (1) the 

ICSD-3 already recommends the use of actigraphy to document 

sleep–wake patterns for assessment of Shift Work Disorder [17] 

and (2) prior evidence that sleep timing is a significant indicator 

of circadian phase in those under normal living conditions [22, 

32–34], we selected habitual timing of sleep as the best-available 

proxy of circadian phase in the clinic. We separated sleep timing 

on workdays and non-workdays to account for the fact that 

night shift workers often revert from daytime sleep (i.e. fol-

lowing night shifts) to nighttime sleep on non-workdays. Sleep 

timing specifically on non-workdays was of interest because it 

is not constrained by work schedules and thus may more likely 

reflect endogenous sleep–wake rhythms than sleep following 

night shifts. Operationally, a circular average of the timing of 

sleep derived via actigraphy was conducted by workdays and 

non-workdays for each participant, and DLMO was estimated 

at 2 h prior to average sleep time based on typical phase angle 

between DLMO and sleep time1 [32, 35, 36].

Analytical approach

Agreement between the observed and predicted DLMO was as-

sessed using Lin’s concordance coefficient, which is typically 

applied to evaluate the agreement between a new test and a 

gold standard test [37]. This approach is more rigorous than 

deriving an R2 value from an ordinary least squares approach 

because it assesses deviation from perfect agreement (i.e. a 

line-of-slope-one) instead of deviation from a line-of-best-fit. 

To account for time as a circular variable (i.e. each timepoint 

repeats every 24 h), we shifted each point of observed DLMO by 

24 h in chronological order and computed Lin’s concordance co-

efficient for each iteration. The lowest Lin’s concordance coeffi-

cient was selected to represent the point cluster with the most 

unbiased estimate of agreement. The absolute mean error was 

also calculated, along with the percentage of agreement within 

± 2 h (4 h range) and ± 4 h (8 h range) as these cutoffs approxi-

mate inclusion of 50% and 100% of DLMOs in healthy adults not 

engaged in night shift work [21].

A series of sensitivity analyses were also conducted. To 

examine if the concordance rate was generalizable to people with 

symptoms of shift work disorder, concordance was also tested in 

a subsample of shift workers with clinically significant symptoms 

(>10 on the Insomnia Severity Index, and/or >10 on the Epworth 

Sleepiness Scale; n  = 29). To explore the potential for model re-

finement, we also examined if an error in the model predictions 

varied by age, sex, years of experience on the night shift, shift start 

time, and seasonality (indexed by day length on the day of data 

collection, i.e. duration from sunrise to sunset). These variables 

were tested as a predictor via linear regression with absolute error 

as the dependent variable. Finally, we also evaluated model per-

formance when only activity data and only light data were used 

as inputs, as this may have implications for the use of activity 

trackers that do not include both light and activity sensors.

Results

Sample characteristics

A total of 45 fixed night shift workers (37 females) were in-

cluded in the final analysis, with a mean age of 39.2 (SD = 10.3, 

range  =  21–64). Participants worked between 3 and 6 night 

1 Post hoc analyses explored additional comparators. These in-

cluded observed sleep onset, 2-h prior to sleep onset (representing 

typical phase angle from DLMO to sleep onset), and sleep midpoint 

averaged across all days, workdays only, and non-workdays only. 

A similar trend was found across comparators, with 2-h prior to 

sleep onset on non-workdays demonstrating the strongest con-

cordance with DLMO.
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shifts per week, and had been on the night shift for an average 

of 8.4 years (SD = 8.0 years). Shift start times ranged from 6:30 

pm to 12:00 am, and shift end times ranged from 5:00 am to 8:00 

am. Shift duration ranged from 8 to 13.5 h. Actiwatch collection 

period was on average 16 days ± 10.8 SD (range 4–42 days). The 

average DLMO in the laboratory was at 11:01 pm, with skew-

ness (0.08) and excess kurtosis (1.54) values falling within the 

range of a normal distribution. There was a significant spread 

in the range of DLMO values (see Figure 1). A total of 10 parti-

cipants (22%) exhibited at least partial adjustment into a com-

promised phase position (DLMO between 3:00 am and 11:00 

am) [38, 39], which is consistent with the prior rate of 23.7% 

documented in an earlier review of circadian adjustment in 

night shift workers [38].

DLMO prediction

DLMO proxy using sleep timing

First, we examined the accuracy of sleep timing on workdays 

(i.e. after the night shift) as a proxy of DLMO. Sleep timing clus-

tered within an 8.5  h window between 7:00 am and 3:30 pm, 

resulting in the DLMO proxies ranging between 5:00 am and 1:30 

pm. This range contained only 13% of the true observed DLMO 

values. Lin’s coefficient of concordance was 0.17, indicating very 

poor agreement (see Figure 2, A). The average error was −3.89 h 

and the absolute mean error was 7.46 h, with 16% of predictions 

falling within ± 2 h, and 24% of predictions falling within ± 4 h.

In determining the accuracy of sleep timing on non-workdays 

as a proxy of DLMO, we found that sleep timing fell within a 

larger window of 13 h ranging from 6:30 pm to 7:30 am. This re-

sulted in DLMO proxies ranging between 4:30 pm and 5:30 am, 

which contained 82% of the true observed DLMO values. Though 

this was significantly better than sleep timing on workdays, 

Lin’s coefficient of concordance between sleep timing on non-

workdays and DLMO was 0.38, indicating poor agreement (see 

Figure 2, B). The average error was 0.48 h and the absolute mean 

error was 3.52 h, with 29% of predictions falling within ± 2 h, and 

64% of the predictions falling within ± 4 h.

DLMO prediction using activity and light

Model predictions of DLMO using activity and light fell within a 

18.5 h window, which contained 96% of the true observed DLMO 

values. The Lin’s concordance coefficient using DLMO predicted 

from light and activity was almost twice as strong, with an es-

timate of 0.70 indicating moderately strong agreement (see 

Figure 2, C). The average difference between observed and pre-

dicted DLMO was −0.34 h, which was not significantly different 

from zero, t(44) = −0.60, p = 0.55, suggesting no bias in predic-

tions. The absolute mean error in the prediction of DLMO fitted 

to a line-of-slope-one was 2.88 h. Whereas 76% of the predic-

tions fell within ± 2 h, 91% of the predictions fell within ± 4 h. 

Examination of individual prediction errors revealed three out-

lier participants with errors above 7 h (absolute mean error sans 

outliers fell to 2.41 h).

A sensitivity analysis using a subsample of shift workers 

with clinically significant symptoms of sleep disturbance and/

or excessive sleepiness (n  =  29) indicated that the strength of 

concordance was maintained (concordance coefficient of 0.67), 

suggesting generalizability of results to a clinical setting with 

predominantly symptomatic patients.

To better understand the independent contributions of light 

and activity, a sensitivity analysis evaluated performance when 

only light data and only activity data were used as inputs to the 

model. The use of activity data by itself is of particular interest 

given the potential for use of activity trackers without light 

sensors in predicting circadian phase. Consistent with our other 

work [28], predictions generated with only light data did not 

perform as well as that generated with only activity data. The 

Lin’s concordance coefficient for predictions using only light 

data was 0.63 with a mean absolute error of 3.72 h. In contrast, 

predictions generated solely from activity data showed stronger 

concordance with observed DLMO, with a Lin’s concordance co-

efficient of 0.72 and a mean absolute error of 2.91 h.

Variance in error

Age, sex, years on the night shift, and start time of night shift 

were not significant predictors of error in model prediction. 

However, shorter day lengths (i.e. during winter months) ap-

peared to be associated with higher error (see Figure 3). In fact, 

the data showed significant exponential decay (p < 0.001), sug-

gesting that the error was substantially higher for shorter day 

lengths. Indeed, for day lengths shorter than 12 h, each hour of 

decrease in day length was associated with a 1.88 h increase in 

absolute mean error. As such, we conducted a post hoc adjust-

ment of the model by doubling sensitivity to light during shorter 

days (day length < 12 h). This reduced the absolute mean error to 

2.77 h, suggesting that accuracy in predictions can be improved 

with model refinement.

Discussion

The major barrier to the implementation of behavioral inter-

ventions for circadian misalignment in night shift workers is 

the lack of clinically feasible and accurate assessments of cir-

cadian phase in this population. Laboratory-based measure-

ment of DLMO—while being the gold standard measurement 

Figure 1. Histogram showing the observed DLMO in night shift workers (plotted 

on a 24-h clock). The range of observed DLMOs spans nearly the entire 24-h day, 

though many are clustered around midnight.
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of circadian phase—is time and resource intensive even in day 

workers, and thus has limited feasibility in real-world clinical 

approaches. As such, this study tested the clinical translation 

of DLMO prediction using wrist actigraphy and photometry in a 

sample of fixed night shift workers.

Until recently, model predictions of DLMO have been predom-

inantly tested in individuals living largely diurnal schedules and 

work conditions; however, the clinical application of DLMO predic-

tion is most relevant for individuals with a 24-h range of circadian 

disruption. Night shift workers are among those with the most 

significant circadian disruption because they routinely experience 

extremely irregular light exposure and often have erratic sleep–

wake schedules spanning the entire 24-h period. Consistent with 

this, we observed a much larger spread of DLMO in this sample 

compared to prior studies of DLMO prediction, thereby allowing 

us to test the performance of DLMO prediction under ecologically 

valid conditions for fixed night shift workers.

Importantly, this study is the first to demonstrate that pre-

dicted DLMO using combined activity and light collected pas-

sively via wrist actrigraphs exhibited good concordance with 

gold standard DLMO measured in the lab (concordance = 0.70). 

Furthermore, the model outperformed the use of average sleep 

timing as the next best proxy of DLMO (concordance = 0.38 and 

0.17). Importantly, sleep timing generally performed poorly as 

a proxy of DLMO, thus reinforcing the need for more precise 

methods of estimating circadian phase in night shift workers. 

Additionally, the stability of circadian phase in night shift 

workers has not been well-established, so it may also be that 

sleep in the days leading up to the in-lab visit may lose pre-

dictive value over time. Together, these results point to the 

promise for validated wearable technologies as a time-sensitive, 

cost-effective, and clinically feasible tool to meet the demand 

for assessments of circadian phase. Indeed, sensitivity analyses 

suggested that the strength of concordance was maintained in 

a subsample of shift workers with clinically significant symp-

toms of insomnia and sleepiness, suggesting generalizability to 

a clinical setting.

Importantly, sensitivity analyses also indicated that using 

activity data alone as input into the mathematical model pro-

duced predictions that not only performed comparably to com-

bining light and activity data, but also outperformed predictions 

using light data alone. This provided further evidence for the 

limitations of light measurement via wrist actigraphy, and lends 

additional support for the use of activity data in estimating cir-

cadian phase. This is critical because the overwhelming ma-

jority of activity trackers in the consumer market do not include 

light sensors; however, these findings suggest that validated 

consumer-based activity trackers may have potential for infer-

ences beyond rest-activity patterns to include underlying circa-

dian biology. Future research should extend testing of this tool 

using a range of devices in individuals working shifts varying by 

timing, duration, and rotation (speed and direction).

Results from this study have critical implications for the as-

sessment and treatment of shift work disorder. First, the ICSD-3 

currently states that “sleep logs and actrigraphy are recom-

mended to demonstrate a disrupted sleep-wake pattern con-

sistent with shift work disorder” [17]. Thus, the use of actigraphy 

and sleep diary represents best practice in the clinical manage-

ment of night shift workers. However, unlike in entrained in-

dividuals under normal living conditions, our results indicate 

that the predictive value of sleep timing for DLMO is much 

more limited in night shift workers. Whereas the homeostatic 

(process S) and circadian processes (process C) are typically 

operating harmoniously in entrained individuals, the nocturnal 

Figure 3. Average absolute error in model predictions by day length (duration 

of sunrise to sunset).

Figure 2. Comparison of DLMO predictions using sleep timing versus activity and light. (A) Agreement with in-lab DLMO using timing of sleep onset on workdays as a 

proxy of DLMO (estimated at 2 h prior to sleep onset). (B) Agreement with in-lab DLMO using timing of sleep onset on non-workdays as a proxy of DLMO (estimated at 

2 h prior to sleep onset). (C) Agreement with in-lab DLMO using predicted DLMO from activity and light data.
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work schedule decouples these processes, thus limiting the 

predictive validity of sleep timing as an indicator of circadian 

phase. Additionally, night shift workers may be incentivized 

to sleep at times that are mismatched with their endogenous 

rhythms even on non-workdays. For example, night shift 

workers often try to maximize time with family on rest days by 

matching their sleep-wake schedules with their partner/spouse 

rather than following their endogenous rhythms. However, our 

results suggest that the same actigraphic and photometric data 

used to estimate sleep can be processed in a novel and access-

ible method to  provide more precise estimates of circadian 

phase. An open-source prototype of this tool is available via an 

internet-based portal where light and activity data from wrist-

worn devices can be uploaded to produce DLMO estimates 

(www.predictDLMO.com).

The availability of clinically feasible and increasingly ac-

curate assessments of circadian phase is critical to the progress 

of circadian medicine. Currently, the paucity of clinically feas-

ible assessments of circadian phase means that providers must 

either enact treatment plans for night shift workers without 

regard to circadian phase or resort to using inaccurate proxies 

of circadian phase (e.g. sleep timing). Using inaccurate proxies 

of circadian phase in treatments can increase the likelihood 

of adverse outcomes that exacerbate symptoms of shift work 

disorder. For example, when correcting circadian misalignment 

using bright light therapy designed to engender a phase delay, 

errors of accidental phase advances due to mistimed light ex-

posure could further exacerbate nocturnal sleepiness and day-

time insomnia. Overly large delays can also result in accidental 

misplacement of DLMO at inopportune times—such as during 

the afternoon—that can also cause nocturnal sleepiness (par-

ticularly during the first, and often busiest, portion of the night 

shift) and insomnia during the daytime. Aside from the phase 

shifting impact of light, prior research has shown that the 

alerting effect of light for night shift workers is also dependent 

on the accurate timing of light exposure [40].

Unsurprisingly, model predictions of DLMO were not as ro-

bust in night shift workers relative to healthy and entrained indi-

viduals, where the timing of DLMO is restricted to a very narrow 

range [21]. Prediction errors in this sample were also higher com-

pared to workers following a 3–5 day transition from the day to 

the night shift in Stone et al. [20], suggesting more sources of error 

should be accounted for when workers are under more chron-

ically irregular schedules of the kind seen in fixed night shift 

workers. Nevertheless, our results suggest the mean absolute 

error of model prediction is only 1–2 h higher compared to other 

samples. However, the addition of parameters to account for sys-

tematic errors, or to reduce outliers, will likely lead to improved 

accuracy of model predictions. Indeed, our results suggest that 

seasonal variations in how the mammalian circadian system re-

sponds to light (modulated by differences in the coupling of the 

ventral and dorsal regions of the suprachiasmatic nucleus [41]) 

may be an important parameter to account for. There may also be 

significant physiological differences between individual circadian 

systems that could be accounted for in the model. For example, 

a recent article found remarkable individual variation in sensi-

tivity to evening light as indexed by melatonin suppression [42]. 

When compounded by chronic exposure to irregular light-dark 

and sleep–wake schedules, individual differences in light sensi-

tivity may contribute to a range of individual circadian responses 

to night shift work. Accounting for these sources of variance in 

the DLMO estimation model will lead to improved accuracy and 

enhanced clinical utility. Finally, because these mathematical 

models were trained predominantly on data in non-clinical popu-

lations, later model specifications may need to account for the 

impact of shift work chronicity on circadian parameters such as 

amplitude, period, and/or rhythmicity (e.g. bifurcation of mela-

tonin rhythms). Thus, future refinements are likely to generate 

more accurate estimates of circadian phase in shift workers to 

produce models that are robust to variations in both external (e.g. 

rotation and direction of shifts, type of work, etc.) and internal 

sources (comorbid disorders, symptom presentations, medica-

tion effects, etc.)

Conclusions

This study represents a first step in the clinical translation of 

modeling light and activity data from wrist-worn actigraphy to 

estimate circadian phase in fixed night shift workers. Results 

demonstrated the promise of this approach as the predictions 

show good concordance with in-lab DLMO, and outperformed 

the best proxy of circadian phase currently available in the 

clinic. Future research should include individual differences to 

increase the precision and thus utility of this method for clinical 

assessment and intervention of shift work disorder.

Supplementary Material

Supplementary material is available at SLEEP online.
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