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A paradox exists in sleep medicine and research—disordered 

sleep is detrimental through nightly, chronic exposure to sleep 

disturbances over months to years, but our gold-standard ap-

proach to assess sleep, the polysomnogram (PSG) [1], is generally 

used in the laboratory and is not practical for more than one 

to two nights of consecutive sleep assessments. Thus, current 

PSG technology lacks the capacity to assess sleep in an ecologic-

ally valid environment outside the laboratory where night-to-

night variation in sleep disturbances likely occur over months 

to years.

Use of US Food and Drug Administration (FDA) cleared 

actigraphs has long been accepted by the research and med-

ical communities as a sound method to track sleep over days 

to weeks in the ambulatory environment [2–4]. However, wide-

spread utilization of actigraphy is limited by several factors. 

For example, actigraphs are expensive, typically monitor only 

motion without other physiological signals, and usually do not 

transmit information to clinicians or researchers in real time. 

Additionally, the information derived from actigraphs requires 

laborious data cleaning [3, 5]. Despite the resources required, use 

and interpretation of actigraphy is not typically reimbursed by 

insurers, which limits clinical utilization. From a research stand-

point, the significant time, expertise, and cost of actigraphy 

data collection and interpretation often restrict study size and 

duration.

Consumer sleep tracking devices provide a relatively easy, in-

expensive way to assess sleep over months to years, and their 

near ubiquitous use in modern society presents a potential 

solution to the problem of assessing sleep in the ambulatory 

environment. However, unclear performance and reliability of 

consumer sleep technologies (CSTs) has delayed clinical and 

research implementation [6–8]. Guidelines to assess the per-

formance of CSTs have been disseminated, but strategies to sys-

tematically implement these guidelines are lacking and are a 

stated need to advance sleep medicine and research [7, 8].

In this issue of SLEEP, Menghini and colleagues address 

this need by providing a step-by-step analytic framework, ac-

companied by open-source R functions, to evaluate the per-

formance of sleep trackers [9]. The procedures detailed by the 

authors are aimed at standardizing data collection processes, 

analytical techniques, and terminology used to describe results 

of studies designed to assess the sleep estimation capabilities 

of CSTs. Although PSG is the recommended gold-standard com-

parator, the framework presented here is flexible and adapt-

able to other reference sleep measures and can be applied to 

standard actigraphy. Additionally, the presented methods and 

calculations are applicable to systems that differentiate sleep 

from wake or classify sleep stages.

Importantly, throughout the manuscript, the authors urge 

that the term “validity” is replaced by “performance.” Validity 

is defined as “the quality or state of being valid: such as the 

quality of being well-grounded, sound, or correct.” Therefore, 

use of the term validation to describe the act of comparing 

two sleep assessment methods is faulty and such use of 

the term in this context should be abandoned by our field. 

For example, performance thresholds to “validate” CST de-

vices against PSG are not established and are likely to vary 

between populations and study outcomes. Findings reporting 
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performance of a device against PSG, or another device, allow 

the end-user to determine if the device performance meets 

their stated needs. Critically, such performance measures 

must be conducted prior to implementing any CST for clinical 

or research purposes.

Supporting prior specifications [7, 8], the authors recommend 

that epoch-by-epoch (EBE) data is sought from the CST manufac-

turer to allow for comparison of simultaneous time increments 

between the CST system (device and analytic platform) and ref-

erence measure. For systems that provide EBE data, the first step 

of their pipeline [9] provides instructions to appropriately struc-

ture the data. For example, in settings where the epoch duration 

of the CST system does not match the 30-second epoch used to 

score PSG, reconciliation is required. Additionally, the start and 

end of the time in bed period monitored by the CST must be syn-

chronized with lights on and lights off. Finally, annotated data 

from the CST system and PSG must share the same codes for 

each state (wake, sleep, etc.) to prepare the data for analysis.

Building upon prior recommendations [7, 8], Menghini and 

colleagues describe appropriate EBE analysis methods starting 

with the construction of error matrices that identify correct and 

misclassified sleep categories (i.e. wake, light, deep, and stage R 

sleep) by the CST system. Error matrices are then used to compute 

sleep-stage sensitivity and specificity. To account for individual-

level differences, the authors recommend constructing error 

matrices for each study participant to calculate individual sleep-

stage specificity and sensitivity prior to averaging group level 

values. To facilitate these calculations, both individual and abso-

lute (error matrices calculated with aggregate data) computation 

methods are included in the corresponding R code.

In addition to sensitivity and specificity, positive predictive 

value, negative predictive value, prevalence index, and bias 

index are identified as useful metrics that should be calculated 

from EBE data to further characterize CST system performance. 

Other additional EBE computations included in the authors’ 

framework consist of McNemar’s test, Kappa coefficient and 

prevalence-adjusted bias-adjusted kappa (given imbalance be-

tween sleep and wake epochs during the usual sleep period), 

and receiver operating characteristic curves.

The manuscript also sets forth analysis procedures that 

are applicable even when CST system output is only available 

in summary form over the course of the night. A discrepancy 

analysis is necessary in the comparison of any new testing 

method to gold-standard. Techniques to systematically con-

duct a discrepancy analysis are provided and the computa-

tions that underlie these metrics are described in detail. The 

measurement differences between CST system and PSG, for 

each sleep parameter, should first be evaluated on an indi-

vidual level. Subsequently, systematic and random error are 

quantified by bias and 95% level of agreement, calculations 

that are contingent on assumptions of constant bias (bias in-

dependent from measurement size), homoscedasticity (error 

consistent over measurement sizes), and normal distribution 

of differences. Therefore, tests for these assumptions are also 

included in the open-source R functions associated with this 

publication.

After the procedures and rationale for each analysis step 

are provided, Meghini and colleagues apply their open-source 

tool to data from an investigation that compared a widely used 

CST to PSG in 14 healthy adults. The pipeline was success-

fully deployed for data structuring, and discrepancy and EBE 

analysis. The discrepancy analysis demonstrated violations of 

constant bias, homoscedasticity, and normal distribution as-

sumptions and exemplified the role of linear regression to ex-

press bias and bootstrapping and logarithmic transformation 

for heteroscedasticity and non-normal distributions. Bland 

Altman plots of CST and PSG differences for each sleep param-

eter (total sleep time, sleep efficiency, wake after sleep onset, 

light sleep duration, deep sleep duration, REM sleep duration) 

allow the readers to visualize the scenarios of (1) all assump-

tions satisfied, (2) proportional bias with homoscedasticity, (3) 

constant bias with heteroscedasticity, and (4) both proportional 

bias and heteroscedasticity. Next, error matrices were tabulated 

from the example EBE data and revealed the sleep state mis-

classifications underlying the discrepancy analysis findings, 

highlighting the benefits of this comprehensive approach to as-

sess CST system performance.

The work and companion R functions (https://github.com/

SRI-human-sleep/sleep-trackers-performance) by Menghini 

and colleagues operationalize the recommended techniques for 

analyzing the performance of CSTs- against PSG (or other refer-

ence) for comparison studies. The authors satisfied the need for 

tools to improve efficiency and reproducibility and reduce het-

erogeneity of investigations into CST performance.

Numerous limitations translating CST performance from 

in-laboratory investigations to the free-living environment exist 

and include passive time in bed detection, home sleep environ-

ment factors (e.g. spouse or pets), reliability over time, assessing 

sleep periods outside of the main sleep bout, output scores that do 

not correspond to clinical or scientific metrics (e.g. nightly sleep 

score), and concerns related to use in certain populations with 

co-morbid disorders. Further, CST system performance is specific 

to the device and associated firmware and software versions, and 

the ability to extrapolate these results after sensor, algorithm, 

and other updates remains unclear. Nonetheless, Meghini and 

colleagues brought us one step closer to standardized and trans-

parent use of CSTs and we recommend adopting their guidelines.

Objective sleep parameters, recorded over time, provide 

distinct and valuable information over self-report for the clin-

ical evaluation and management of various sleep disorders [4]. 

Additionally, a growing body of research has revealed the im-

portance of sleep parameters beyond sleep duration [10–16], 

which are only feasibly obtained through passive, objective 

sleep recording over time. Therefore, the utility of CSTs tran-

scends the current use cases for actigraphy as the duration of 

sleep tracking with CSTs far exceeds the usual one to 2 weeks 

of sleep recorded with actigraphs. Rational, transparent, and 

scientifically sound use of CSTs may capture previously un-

identified changes in sleep over months, seasons, and years 

relevant to health and disease. Therefore, a pipeline to improve 

the efficiency of CST performance assessment is crucial and is 

well-positioned to advance sleep medicine and research.
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