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Abstract

Study Objectives: Mobility restrictions imposed to suppress transmission of COVID-19 can alter physical activity (PA) and sleep patterns 

that are important for health and well-being. Characterization of response heterogeneity and their underlying associations may assist in 

stratifying the health impact of the pandemic.

Methods: We obtained wearable data covering baseline, incremental mobility restriction, and lockdown periods from 1,824 city-dwelling, working 

adults aged 21–40 years, incorporating 206,381 nights of sleep and 334,038 days of PA. Distinct rest-activity rhythm (RAR) profiles were identified 

using k-means clustering, indicating participants’ temporal distribution of step counts over the day. Hierarchical clustering of the proportion of 

days spent in each of these RAR profiles revealed four groups who expressed different mixtures of RAR profiles before and during the lockdown.

Results: Time in bed increased by 20 min during the lockdown without loss of sleep efficiency, while social jetlag measures decreased by 

15 min. Resting heart rate declined by ~2 bpm. PA dropped an average of 42%. Four groups with different compositions of RAR profiles were 

found. Three were better able to maintain PA and weekday/weekend differentiation during lockdown. The least active group comprising ~51% 

of the sample, were younger and predominantly singles. Habitually less active already, this group showed the greatest reduction in PA during 

lockdown with little weekday/weekend differences.

Conclusion: In the early aftermath of COVID-19 mobility restriction, PA appears to be more severely affected than sleep. RAR evaluation 

uncovered heterogeneity of responses to lockdown that could associate with different outcomes should the resolution of COVID-19 be protracted.

Key words:  COVID-19; mobility restrictions; wearables; sleep; rest-activity rhythms; machine learning

Statement of Significance

The COVID-19 pandemic has significantly impacted health and daily routines of many worldwide through widespread mobility restrictions. 

We analyzed longitudinal sleep/activity tracker data from ~1,800 office workers collected before the outbreak, through mobility restrictions, 

and culminating in lockdown. In addition to characterizing objective measures of sleep and physical activity (PA), we demonstrate how 

heterogenous groups are affected by using novel rest-activity rhythm and hierarchical clustering approaches. Contrary to popular expect-

ation, sleep shifted later, duration increased, and social jetlag decreased. The substantial drop in PA is of greater concern. Adoption of our 

analytic methods may help identify groups at-risk in a protracted pandemic.
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Introduction

Adequate sleep and physical activity (PA) are two of the triad 

of lifestyle factors critical to multiple aspects of health and 

well-being [1–5]. Mobility restrictions imposed to contain the 

spread of COVID-19 (e.g. work from home, closure of social 

venues, and lockdown) have massively disrupted the daily rou-

tines of people worldwide [6]. This could lead to detrimental 

longer-term health consequences, particularly if lockdowns are 

protracted [4, 7].

During the pandemic, greater anxiety [8] and increased en-

gagement on electronic media [9] for social engagement and 

news gathering could drive bedtimes later for some, curtailing 

sleep. On the other hand, for others, working from home [10] 

could afford greater flexibility in scheduling, save time from 

commuting, and reduce office-related stress, which could facili-

tate sleep health. Social jetlag (SJL) measures, which quantify 

the discrepancy between biological and social clocks [11] that 

often contribute to sleep loss, could in fact be reduced through 

greater flexibility in work hours. Recent survey-based studies 

[12, 13] appear to support improved sleep health but also point 

to instances where sleep quality may be adversely affected by 

greater sensitivity to stress [14].

PA benefits musculoskeletal, cognitive [15], cardiometabolic 

health [16], and sleep [17]. Additionally, exercise outdoors posi-

tively influences mental well-being [18] and morning light ex-

posure serves to synchronize the circadian clock [19], restraining 

our innate tendency to sleep later over successive nights. Even 

if one does not have time for intentional exercise, walking on 

the way to and from work contributes significantly to PA [20, 21]. 

Mobility restrictions that limit commuting and social gatherings 

have resulted in a reduction of both structured and unstruc-

tured forms of PA [22, 23].

In addition to the duration of sleep and PA of themselves, 

their respective timing and distribution matter. For example, it 

may be preferable to accumulate PA across the day rather than 

to concentrate it within a short period but maintaining un-

healthy levels of sedentary time [24]. How incremental mobility 

restriction upsets the rhythm of sleep and daytime PA is thus of 

broad public health interest.

In this study, we analyzed sleep and PA data from the “Health 

Insights Singapore” (hiSG)  cohort. Since August 2018, over a 

thousand young working adults in Singapore were provided 

with a Fitbit Ionic wearable sleep and activity tracker to evaluate 

health behavior. This ongoing study provided us with a unique 

opportunity to characterize how COVID-19-associated mobility 

restrictions shifted sleep and PA patterns from previously es-

tablished baselines using objective, longitudinal measurement 

in contrast to using surveys [9, 25]. We used machine learning 

to identify different rest-activity rhythm (RAR) profiles. This 

approach was also used to identify heterogenous sleep and PA 

transformations in different sociodemographic groups.

Methods

Data source

Data were obtained from the “Health Insights Singapore” (hiSG) 

study, a longitudinal population-health study by the Health 

Promotion Board using wrist-worn wearable technology. Initiated 

in August 2018, the study recruited 1,951 young adults working 

in the Central Business District aged 21–40  years. Participants 

were given devices (Fitbit Ionic, Fitbit Inc, San Francisco, CA) 

to track their activity/sleep and installed a mobile application 

to complete surveys over a period of 2 years. Participants were 

rewarded with points convertible to vouchers if they wore the 

tracker daily, logged sleep, meals, and completed surveys and 

were allowed to keep the device conditional upon meeting study 

requirements. Demographic, health, and lifestyle questionnaires 

were administered at study commencement. A  second survey 

conducted in February 2020 was used to update any changes to 

family status, while a third survey was conducted in June 2020 

to probe symptoms of depression using the revised Center for 

Epidemiologic Studies Depression Scale (CESD-R) [26]. To assess 

perceived sleep health during the lockdown, we extracted items 

from the CESD-R sleep subscale, which consisted of three ques-

tions. These questions asked about the number of days in the 

past 1–2 weeks an individual (1) perceived his sleep to be rest-

less, (2) had trouble getting to sleep, and (3) slept much more 

than usual. The National Healthcare Group Domain Specific 

Review Board approved the study protocol. Informed consent 

was obtained from all subjects prior to study participation.

To evaluate the impact of the COVID-19 pandemic, we 

studied data gathered between January 2 and April 27, 2020, 

starting 3 weeks before the first case was reported in Singapore 

(“Baseline,” January 2–22) and ending 3 weeks into the lock-

down enforced by the Singapore government (“Lockdown,” April 

7–27). A  3-week period of increased restrictions (“Increased 

Restrictions,” March 17–April 6) was also included to assess the 

impact of incremental mobility restrictions before the lock-

down. To properly evaluate shifts in habitual sleep and PA, we 

compared the 2020 data with an equivalent “Control” period in 

2019; from January 3 to April 29, 2019. Only individuals who had 

valid data on both years after filtering (see below) were included. 

This comprised 206,381 nights of sleep and 334,038 days of PA 

from a final sample of 1,824 individuals. All dates presented 

refer to the morning of each sleep/daytime PA record, such that 

sleep always preceded PA for that date.

Tracker-based data

Sleep and PA data for each participant were extracted from the 

Fitbit API. The PA data comprised daily total steps, moderate-

to-vigorous physical activity (MVPA) minutes (sum of fairly and 

very active minutes), resting heart rate levels, and intraday step 

counts in 15-min intervals. Fitbit defines MVPA as activity of 

> 3METS (metabolic equivalents), and utilizes heart rate data 

to calculate active minutes for non-step-based activities such 

as weightlifting, yoga, and rowing [27]. For the comparison of 

measurements across time, data were filtered to remove days 

when participants did not wear the Fitbit for at least 8 h/day 

or when atypical activity levels were observed. This was de-

fined as records with (1) total daily steps > 50,000, (2) total daily 

steps > 40,000 and sedentary minutes > 1,320 min, (3) seden-

tary minutes = 1,440 min, and (4) no resting heart rate and no 

steps measure. Between 1,041 and 1,562 (mean: 1,375) parti-

cipants contributed to each timepoint for PA data. Wear time 

averaged 18–19  h (mean: 18.5  h) for each day. Not everyone 

contributed data on all the dates, but the large sample made 

it less likely that any individual’s data would significantly alter 

group means.
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Sleep data consisted of bedtimes, wake times, time in bed 

(TIB), total sleep time (TST), and time spent awake after sleep 

onset (WASO). Sleep efficiency was computed as (100*TST/TIB) 

while SJL was defined as the difference between the midpoint 

of sleep on weekends and weekdays [11]. As in our prior work, 

we limited analyses to only nights with heart rate-derived sleep 

staged data, as this ensured proper wear time during the night, 

and excluded records manually adjusted by the user. Records 

that indicated <4  h TIB or >12  h TIB were also excluded from 

the calculation of sleep variables, as it could indicate possible 

split sleep sessions or inappropriate detection of sleep by the 

algorithm (e.g. long periods of sedentary activity after wake). In 

addition, to exclude atypical sleep periods, we removed sleep 

sessions that commenced between 08:00 am and 08:00 pm and 

split sleep sessions. Importantly, the number of records ex-

cluded did not materially differ for records pre-lockdown (4.61%) 

compared with during the lockdown (4.46%). After data filtering, 

between 766 and 1,063 (mean: 898) participants contributed to 

each timepoint for sleep data (Figure 1).

Identification of RAR profiles

To integrate both amplitude and timing of PA and sleep periods 

across a 24  h period, we computed canonical RAR profiles for 

each day from each individual. To do this, 24 h intraday raw step 

counts were log-transformed using a natural log function. Each 

day consisted of 96 15-min interval bins, starting and ending at 

12:00 am and 11:45 pm, respectively. All valid days (>13 h of total 

wear time) across the whole sample from January to April 2020 

(125,851 days) were subsequently fed into a k-means clustering 

model to identify distinct clusters, or “basis sets” of daily RAR 

profiles. This approach enabled the quantitative characteriza-

tion of RAR changes from baseline through lockdown.

The k-means++ algorithm in MATLAB R2016b (Mathworks, 

Inc., Natick, MA) was used to optimize initialization of the 

cluster centers [28]. This was done by random selection of 

the first cluster center, and subsequently choosing additional 

cluster centers from the remaining data points with probability 

proportional to their squared distance from the nearest existing 

cluster centers.

A range of cluster values was explored (k = 2–10) before set-

tling on k = 4 for a parsimonious yet meaningful set of clusters. 

Euclidean distance was used as the distance metric.

Identification of individual differences in changes to 
RAR profiles due to lockdown

To identify groups of individuals who showed similar changes 

in RAR profile composition with increasing mobility restrictions, 

we computed proportion of days spent in each RAR profile both 

pre- (January 1–April 6, 2020) and during (April 7–27, 2020)  the 

lockdown for each individual. Agglomerative hierarchical clus-

tering was performed using these proportions as feature values 

on participants with at least 60% of valid days pre- and during 

the lockdown (N = 670) using Ward’s method and the Euclidean 

distance metric. Missing days were excluded from the propor-

tion calculation, such that proportion of time spent summed to 

1 both pre- and during the lockdown. Supplementary analysis 

revealed that compared to excluded participants, included par-

ticipants tended to be older (~1 year) and had a higher propor-

tion of individuals married with children (27% vs. 19%).

The agglomerative hierarchical clustering method begins by 

considering each individual as a separate entity, and clustering 

individuals that are close together in distance. This process was 

repeated until all individuals were clustered. Inspection of the 

dendrogram helped identify a four-group solution.

Statistical analysis

Paired t-tests were used to analyze differences between de-

scriptive variables in the whole sample between specific 

periods of interest (i.e. “Incremental Restrictions,” “Lockdown,” 

and “Control”) and the “Baseline” period. For analyses of 

sociodemographic differences between the four RAR groups 

determined by hierarchical clustering, one-way analyses of 

variance (ANOVA) and Pearson’s chi-squared test of independ-

ence were used. In addition, 2 × 4 mixed ANOVAs were also per-

formed on activity and sleep variables between the different 

groups with Time as the within-subject factor (“Baseline” and 

“Lockdown”) and Group as the between-subject factor. Only 

subjects who had a minimum of 5 weekdays and 2 weekends 

in each timepoint (“Baseline” and “Lockdown”) were included in 

this analysis (N = 667). For each variable, data points outside the 

1.5 interquartile range were removed from analyses. All statis-

tical analyses were performed in R version 3.6.1.

Results

Key characteristics of the sample and time-
series data

Participants were between 21 and 40  years of age, 51.64% of 

whom were women. Most were office workers who commuted 

to Singapore’s Central Business District. They were relatively 

well educated (86.1% college degree) and earned a median salary 

of SGD 4,000–5,999. Singles comprised 57.8%, married persons 

with children 21.9%. Other details about sociodemographic fea-

tures can be found in Table 1. The average weekday daily com-

mute time reported in this sample was 1.92 h (SD: 0.71 h), so the 

time taken to travel to and from work could be estimated to be 

~1 h each way.

Figure 1 displays the average time courses of sleep (Figure 1, 

A–E) and activity (Figure 1, F–H) over a baseline period (January 

2–22, 3 weeks prior to the first confirmed COVID-19 case in 

Singapore), to a period of incrementally increasing mobility re-

strictions (March 17–April 6), which eventually culminated in 

lockdown (April 7–27, first 3 weeks of lockdown; for a detailed 

timeline of events see Supplementary Figure S1; for a detailed 

breakdown of variables by phase see Tables  2–5). Data from 

2020 are overlaid with data from the same period in 2019 for 

comparison.

Sleep changes with incremental mobility 
restrictions/lockdown

At baseline, the average weekday bedtime was 12:15 am, 

waketime was 07:10 am and total TIB was 6.92 h (TST: 5.99 h). 

Only 45% of the sample achieved the recommended sleep dur-

ation of 7  h (TIB) for this age group [29] on weeknights. This 

increased to 68% on weekends. On weekends, bedtime was 

12:55 am, waketime was 08:25 am and total TIB was 7.49  h 

(TST: 6.50  h). The difference between weekend and weekday 
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TIB was 35 min. SJL, an indicator of the mismatch between bio-

logical and social clocks was 58 min. Sleep efficiency, defined 

as the percentage of time spent actually asleep out of total TIB, 

and which is often considered as an objective marker of sleep 

quality, was generally maintained at 86.6% on weekdays and 

86.7% on weekends.

During the period of incremental restrictions, sleep timing 

slightly but significantly shifted later compared to baseline 

Figure 1. Time-series plots between January 2 and April 27, 2020 (blue curves) and January 3 and April 29, 2019 (red curves) for sleep (top panel) and PA/heart rate 

(bottom panel) parameters. (A) Bedtime, (B) Waketime, (C) TIB, (D) TST, (E) Sleep efficiency, (F) Step counts, (G) Time spent in MVPA, and (H) Resting heart rate. Weekends 

(gray-shaded regions) and public holidays (light blue- and pink-shaded regions) are also delineated. Dates reflect the “morning” of each record, such that sleep records 

always preceded PA. Dates in 2019 were shifted by 1 day in order to ensure a matching by day of the week. Key events during the COVID-19 pandemic period (“Baseline,” 

“Increased restrictions,” and “Lockdown”) are also indicated.
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(weekday: bedtime = 12:27 am, waketime = 07:31 am; weekend: 

bedtime = 12:58 am, waketime = 08:38 am, p’s < 0.05). While TIB 

and TST increased during this period (weekday: TIB  =  7.07  h, 

TST = 6.11 h; weekend: TIB = 7.65 h, TST = 6.62 h, p’s < 0.001), sleep 

efficiency showed a significant but small decrease (weekday 

SE  =  86.5%; weekend SE  =  86.6%, p’s < 0.05). As for weekday–

weekend differences, there was a reduction in SJL to 50 min.

Upon the imposition of lockdown, more drastic shifts in sleep 

in the same direction were observed. Average bed and wake 

times shifted by 21–53 min compared with baseline (weekday: 

bedtime  =  12:45 am, waketime  =  08:03 am; weekend: bed-

time = 01:16 am, waketime = 09:00 am, p’s < 0.001), but as the 

delay in waketimes (weekday: +53 min, weekend: +35 min) was 

significantly larger than the delay in bedtimes (weekday: +30 min, 

weekend: +21  min; p’s < 0.001), this led to an overall increase 

in TIB and TST (weekday: TIB = 7.28 h, TST = 6.30 h; weekend: 

TIB = 7.73 h, TST = 6.68 h; p’s < 0.001) compared with baseline 

measures. About 64% of the sample achieved the recommended 

7  h of sleep on weekdays during the lockdown—increasing by 

19% from baseline measures, while 73% of the sample achieved 

this on weekends during the lockdown—increasing by 5% 

from baseline measures. Sleep efficiency was again slightly re-

duced compared to baseline (weekday: 86.4%; weekend: 86.5%, 

p’s < 0.001). Weekday–weekend differences, on the other hand, 

showed a significant reduction during lockdown (SJL = 43 min, 

weekend–weekday TIB difference = 27 min, p’s < 0.001).

To check on year-to-year stability in sleep measures, we con-

trasted the data from the January 2020 baseline to a comparable 

period in 2019 and found measures to be largely comparable 

(Tables 4 and 5).

PA and resting heart rate changes with incremental 
mobility restrictions

PA measures showed a similar graded response to mobility re-

strictions and lockdown (Figure 1, F–H). At baseline, participants 

had an average daily step count around 9,344 steps on weekdays 

and 8,992 steps on weekends, and clocked between 38 (weekday) 

and 41 (weekend) min of MVPA. Resting heart rate levels hovered 

around 66 bpm at baseline (Figure 1, H).

In the period of incremental mobility restrictions, average 

step count reduced (weekday: 7,796 steps; weekend: 7,423 steps, 

p’s < 0.001), dropping further during lockdown (weekday: 5,284 

steps; weekend: 5,432 steps, p’s < 0.001). MVPA similarly reduced 

during incremental restrictions (weekday: 34  min; weekend: 

36 min, p’s < 0.001), and further in lockdown (weekday: 24 min; 

weekend: 27 min, p’s <0.001).

Resting heart rate also reduced during incremental restric-

tions (weekday: 65.0 bpm; weekend: 64.9 bpm, p’s < 0.001) and 

lockdown (weekday: 64.2 bpm, weekend: 64.1 bpm, p’s <0.001). 

Comparison of the baseline period in January 2020 to the same 

period in 2019 showed a few significant, but small differences 

(see Supplementary Table S1).

Systematic patterns of heterogeneity in sleep and PA 
uncovered with RAR analysis

In order to investigate concurrent changes to the magnitude of 

PA, as well as to the duration and timing of sleep and PA within 

an individual across days, we explored changes to 24 h RAR pro-

files with increasing mobility restrictions. We identified four 

distinct RAR profiles (Figure 2, A): “Active 3-Peak Early,” “3-Peak 

Table 1. Sociodemographic characteristics of hiSG study participants

Characteristics Statistics

Age in years, mean (SD), range 30.94 (4.62), 21–41

Gender, N (%)

 Female 941 (51.64)

Ethnicity, N (%)

 Chinese 1,718 (94.19)

 Malay 31 (1.70)

 Indian 48 (2.63)

 Others 27 (1.48)

Family status, N (%)

 Single 934 (51.21)

 Married with no children 376 (20.61)

 Married with children 484 (26.54)

 Separated/divorced/widowed 30 (1.64)

Household income in SGD, N (%)

 <$2k 180 (9.87)

 $2k–$3.9k 721 (39.53)

 $4k–$5.9k 511 (28.02)

 $6k–$7.9k 172 (9.43)

 $8k–$9.9k 96 (5.26)

 ≥$10k 144 (7.89)

Highest education, N (%)

 Degree 1,570 (86.07)

 No degree 254 (13.93)

Table 2. Sleep variables in 2020 by phase

January 2–22, 2020  

(Baseline)

March 17–April 6, 2020  

(Increased restrictions)

April 7–27, 2020  

(Lockdown)

Weekday (WD) Weekend (WE) Weekday (WD) Weekend (WE) Weekday (WD) Weekend (WE)

Bedtime (hh:mm) 00:15 (01:08) 00:55 (01:23) 00:27 (01:12)*** 00:58 (01:29)* 00:45 (01:20)*** 01:16 (01:32)***

Waketime (hh:mm) 07:10 (01:09) 08:25 (01:31) 07:31 (01:12)*** 08:38 (01:37)*** 08:03 (01:18)*** 09:00 (01:45)***

TIB (h) 6.92 (0.95) 7.49 (1.18) 7.07 (0.92)*** 7.65 (1.16)*** 7.28 (0.96)*** 7.73 (1.18)***

TST (h) 5.99 (0.83) 6.50 (1.03) 6.11 (0.80)*** 6.62 (1.03)*** 6.30 (0.83)*** 6.68 (1.03)***

WASO (h) 0.93 (0.21) 0.99 (0.25) 0.95 (0.21)* 1.03 (0.25) 0.99 (0.22)* 1.05 (0.26)

Sleep efficiency (%) 86.6 (2.4) 86.7 (2.5) 86.5 (2.3)* 86.6 (2.5)* 86.4 (2.26)*** 86.5 (2.53)***

WE-WD TIB difference (min) 35 (76) 34 (70) 27 (69)***

SJL (min) 58 (62) 50 (58)*** 43 (57)***

Values represent means and standard deviations for participants who provided data for each cell (N = 1,467–1,693). Pairwise comparisons are conducted with paired 

t-tests on participants with complete data for both variables (N = 1,330–1,552). Asterisks indicate significant differences from baseline (*p < 0.05, **p < 0.01, ***p < 0.001).
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Middle,” “Active 2-Peak Later,” and “Inactive 3-Peak,” describing 

both magnitude as well as timing of preferred daytime activity. 

Pre-lockdown, weekdays tended to consist of more “Active 

3-Peak Early” and “3-Peak Middle” days (Figure 2, B), indicating 

the strong influence of work as a frame around which life is or-

ganized (Peak 1: Traveling to work, Peak 2: Traveling to lunch, 

and Peak 3: Traveling home). In contrast, weekends tended to 

consist of more “Active 2-Peak Later” and “Inactive 3-Peak” days, 

indicating temporally less structured/lower magnitude of day-

time activity. During the lockdown, both “weekend” patterns in-

creased their expression during weekdays.

A control analyses performed on January 2019, January 2020 

and during the lockdown separately revealed that before the 

restrictions were imposed, the clustered profiles were virtu-

ally identical (r > 0.99; Supplementary Figure S2, A–B). During 

the lockdown period, profiles became attenuated but were still 

highly similar to the profiles estimated using the full dataset (r: 

0.84–0.98; Supplementary Figure S2, C).

Individual differences in changes in RAR patterns 
due to lockdown

As a final analysis, we examined whether there were 

interindividual differences in how participants altered their 

rest-activity profiles. We calculated how often participants had 

shown each of the four identified RAR profiles (proportion of 

days spent in RAR profile) pre- and during the lockdown and 

used this to categorize participants into groups who showed 

similar changes to RAR profile composition pre-lockdown to 

during lockdown (using hierarchical clustering; see Figure 3, A).

The largest group (Group 1: 51% of participants) predominantly 

showed the “3-Peak Middle” and “Active 2-Peak Later” profiles on 

pre-lockdown weekdays and weekends, respectively. During lock-

down, they showed a large shift toward the “Inactive 3-Peak” RAR 

profile (Figure 3, B–C), and a clear abolition of weekday–weekend 

differences in RAR profiles. This group was the least physically ac-

tive compared to the other three groups at baseline (9,517 steps in 

Group 1 compared with 12,011, 10,960, 11,275 steps in Groups 2, 

3, and 4 respectively; all p’s < 0.001), and also showed the largest 

drop in step count—a 51% reduction in steps relative to baseline 

(−4,833 steps in Group 1 compared with −2,742, −2,098, and −2,966 

in Groups 2, 3, and 4 respectively; all p’s < 0.001). This group also 

slept and woke later than Groups 2 and 3 (p’s < 0.05) (Figure 4, A–B, 

Table 6). TST was not adversely affected by the lockdown, and in 

fact, slightly increased by 17.5 min (p < 0.001). However, based on 

subjective reports of sleep quality, this group had difficulty falling 

asleep compared with Group 2 (p = 0.002), after controlling for age, 

sex, and family status. Interestingly, in contrast to their strongly 

attenuated weekday/weekend activity difference (baseline = 544 

steps, lockdown = −338 steps, p < 0.001), there was only relatively, 

modest attenuation of weekday/weekend difference in TIB (base-

line = −42 min, lockdown = −25 min, p < 0.001). This group was 

over-represented by younger, single persons.

Group 2 comprised 14% of persons and showed a dominant 

“Active 3-Peak Early” RAR profile (50%–70% of the time; Figure 3, 

B–C). This profile was dominant both pre-lockdown as well as 

during lockdown (although there was a slight reduction in pro-

portion of the dominant profile on weekdays during the lock-

down). This group was the most physically active, averaging 

around 12,011 steps before the pandemic and 9,268 steps when 

the lockdown was imposed. This group was over-represented by 

married couples with children, and tended to retain their ha-

bitual sleep/wake timings as well as TIB.

Group 3 expressed a clear weekday dominant “3-Peak Middle” 

RAR profile and weekend dominant “Active 2-Peak Later” RAR 

Table 4. Control comparison of sleep variables in January 2019 and January 2020

January 3–23, 2019 January 2–22, 2020

WD WE WD WE

Bedtime (hh:mm) 00:13 (01:04) 00:56 (01:17) 00:15 (01:08) 00:55 (01:23)

Waketime (hh:mm) 07:10 (01:02) 08:35 (01:26)*** 07:10 (01:09) 08:25 (01:31)

TIB (h) 6.93 (0.87) 7.65 (1.15)*** 6.92 (0.95) 7.49 (1.18)

TST (h) 6.01 (0.75) 6.64 (1.01)*** 5.99 (0.83) 6.50 (1.03)

WASO (h) 0.92 (0.21)** 1.00 (0.24) 0.93 (0.21) 0.99 (0.25)

Sleep efficiency (%) 86.8 (2.3)** 86.9 (2.4)* 86.6 (2.4) 86.7 (2.5)

WE-WD TIB difference (min) 42 (74)** 35 (76)

SJL (min) 63 (60)** 58 (62)

Values represent means and standard deviations for participants who provided data for each cell (N = 1,619–1,708). Pairwise comparisons are conducted with paired 

t-tests on participants with complete data for both variables (N = 1,468–1,610). Asterisks indicate significant differences from the January 2020 baseline period (*p < 0.05, 

**p < 0.01, ***p < 0.001).

Table 3. PA variables in 2020 by phase

January 2–22, 2020 

(Baseline)

March 17–April 6, 2020 

(Increased restrictions)

April 7–27, 2020  

(Lockdown)

WD WE WD WE WD WE

Steps (count) 9,344 (3,634) 8,992 (4,437) 7,796 (4,125)*** 7,423 (4,679)*** 5,284 (4,283)*** 5,432 (4,692)***

Moderate-to-vigorous physical activity (min) 37.6 (27.9) 40.9 (37.5) 33.5 (29.9)*** 36.0 (37.6)*** 24.4 (28.2)*** 27.2 (32.9)***

Resting heart rate (bpm) 65.7 (7.3) 65.8 (7.3) 65.0 (7.4)*** 64.9 (7.4)*** 64.2 (7.3)*** 64.1 (7.37)***

Values represent means and standard deviations for participants who provided data for each cell (N = 1,654–1,806). Pairwise comparisons are conducted with paired 

t-tests on participants with complete data for both variables (N = 1,628–1,767). Asterisks indicate significant differences from baseline (*p < 0.05, **p < 0.01, ***p < 0.001).
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profile, which was preserved during the lockdown (Figure  3, 

B–C). This group had moderate step counts (between Groups 1 

and 2) and moderate sleep–wake timings. Numerically, they also 

had the lowest drop in SJL measures during lockdown (−29 min), 

although this was only statistically significant compared to 

Group 1 (−15 min, p = 0.02) and Group 4 (−11 min, p = 0.01). Apart 

from a later sleep and wake timing, they bore significant simi-

larities to Group 2 in terms of their consistency and intensity of 

PA. This group averaged 10,960 steps at baseline, dropped the 

least of all four groups and remarkably, maintained their ha-

bitual duration of MVPA even through lockdown (p = 0.50). This 

group was best able to maintain weekday–weekend differences 

in PA routines. Group  3 was strongly dominated by persons 

with a college degree but had even representation in terms of 

family status.

Group  4 was mainly characterized by a dominant “Active 

2-Peak Later” RAR profile on both weekdays and weekends 

(Figure  3, B–C), which was only slightly attenuated during the 

lockdown as proportion of time spent in the dominant state 

increased on weekdays. It was the second largest group in the 

sample (27%) resembling Group 1 in terms of late sleep and wake 

timings (p = 0.99, p = 0.22, respectively) but its members were 

more physically active (p < 0.001), resembling Group 3 in con-

sistency of steps, and intensity of overall PA (p = 0.48, p = 0.49, 

respectively). This group also had more individuals who were 

married with children.

Discussion

Our data show that incremental mobility restrictions and lock-

down to stem the spread of COVID-19 in Singapore had clear 

effects on sleep and PA patterns in young adult office workers. 

Across the entire sample, sleep timings shifted later, sleep dur-

ation increased, and weekend–weekday differences in sleep 

duration and timing (SJL) were substantially reduced. These 

findings align well with survey studies performed in other coun-

tries across the world (US, Europe, and China) [9, 12–14, 30]. 

Contrary to initial expectation, we found only a minimal reduc-

tion in sleep efficiency (indicative of sleep quality). Indices of PA 

(step count and MVPA), showed an expected sharp drop during 

mobility restrictions and lockdown, however resting heart rate 

(indicative of stress and cardiovascular risk), also significantly 

reduced in these periods.

Beyond providing objective confirmation and generalization 

of these overall changes found in other studies [9, 12–14, 30], the 

wearable data also allowed us to characterize interindividual 

differences in RAR profile compositions pre- and during the 

lockdown, based on temporal analysis of daily step counts.

Table 5. Control comparison of PA variables in January 2019 and January 2020

January 3–23, 2019 January 2–22, 2020

WD WE WD WE

Steps (count) 9,533 (3,144)** 9,200 (4,136)* 9,344 (3,634) 8,992 (4,437)

Moderate-to-vigorous physical activity (min) 37.5 (26.5) 41.5 (36.7) 37.6 (27.9) 40.9 (37.5)

Resting heart rate (bpm) 66.2 (7.5)*** 66.3 (7.5)*** 65.7 (7.3) 65.8 (7.3)

Values represent means and standard deviations for participants who provided data for each cell (N = 1,787–1,817). Pairwise comparisons are conducted with paired 

t-tests on participants with complete data for both variables (N = 1,768–1,800). Asterisks indicate significant differences from baseline (*p < 0.05, **p < 0.01, ***p < 0.001).
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Sleep and PA under mobility restrictions restriction 
and lockdown

Contrary to the expectation that the pandemic would elevate 

anxiety which would be reflected in poorer sleep health [8, 

25], we did not find support for this in our sample. Sleep effi-

ciency, an objective marker of sleep quality was only minim-

ally affected during the lockdown (86.5% vs 86.7% in baseline). 

Furthermore, although bedtimes were delayed, wake times were 

delayed even more, leading to total TIB increasing on both week-

days and weekends. The proportion of individuals who received 

at least 7 h of sleep on weekdays increased from 45% to 64%; on 

weekends this increased from 68% to 73%. The greater delays in 

bedtime and extension of sleep on weekdays compared to week-

ends also led to overall decreased SJL and weekend–weekday TIB 

difference during the lockdown. Time savings from commuting 

(mean total daily commute time ~110 min) could have freed up 
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significantly more time to sleep. Travel time was second only to 

work time in having a reciprocal relationship to sleep in a major 

time-use study [31].

The overall pattern of results seems to reflect that the 

changes under mobility restrictions and lockdown might have 

actually benefited sleep. Apart from the increase in sleep dur-

ation, SJL measures are also reduced as individuals shift their 

daily schedules toward their biologically preferred sleep tim-

ings. As greater SJL/circadian misalignment has been associ-

ated with higher risk of depression [32], heart disease [33, 34], 

and adverse metabolic changes (e.g. type 2 diabetes and obesity) 

[35–37], these changes could in fact reflect better sleep habits 

during the lockdown. Although later sleep timings has also been 

shown to be associated with poorer health outcomes [34, 38] 

those observations may have been contributed by sleep curtail-

ment from having waking up earlier than intended as a result of 

fixed morning work start times.

Changes in PA did follow the expected pattern of strong re-

ductions under mobility restriction and lockdown [22, 23]. Overall, 

step count dropped from close to 10,000 steps a day at baseline, 

to nearly half that number during lockdown. MVPA followed a 

similar reduction. Such a drop in PA can be detrimental to health 
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Table 6. Sociodemographic, daily PA, and daily sleep measures by group

Group 1 (M±SD)  

n = 270–344

Group 2 (M±SD)  

n = 74–94

Group 3 (M±SD)  

n = 37–50

Group 4 (M±SD)  

n = 148–182 P

Sociodemographics

 Age (y) 31.25 (4.46)2,4 32.87 (4.23)1 32.52 (4.05) 32.78 (4.23)1 <0.001

 Sex-Females (%) 50.00 46.02 52.00 47.25 0.87

 Ethnicity (%)     0.20

  Chinese 94.48 93.62 98.00 91.76  

  Malay 2.33 3.19 0.00 0.55  

  Indian 2.04 1.06 2.00 3.85  

  Others 1.16 2.13 0.00 3.85  

 Education-degree holders (%) 84.88 84.04 100.00 83.52 0.03

 Household income (%)     0.06

  <$2k 10.17 11.70 2.00 10.99  

  $2k–$3.9k 40.70 44.68 26.00 32.42  

  $4k–$5.9k 26.16 13.83 34.00 28.57  

  $6k–$7.9k 9.01 13.83 16.00 12.09  

  $8k–$9.9k 6.11 9.57 6.00 6.60  

  ≥$10k 7.85 6.38 16.00 9.34  

 Family status (%)     <0.001

  Single 57.85a 35.11 40.00 35.17b  

  Married with no children 20.64 7.45 28.00 18.68  

  Married with children 20.06b 52.13a 30.00 43.96a  

  Separated/divorced/widowed 1.45 5.32b 2.00 2.20  

Health

 BMI (kg/m2) 23.25 (4.12) 23.40 (3.88) 21.85 (2.25)4 23.61 (3.83)3 0.04

Sleep questionnaire†

 Restless sleep 1.12 (1.00) 0.91 (0.92) 0.97 (0.83) 0.89 (0.98) 0.11

 Hypersomnia 0.69 (0.96) 0.54 (0.83) 0.59 (0.93) 0.57 (0.87) 0.74

 Trouble falling asleep 0.91 (1.04)2 0.45 (0.72)1 0.57 (0.65) 0.68 (0.95) 0.001

 Baseline Lockdown Baseline Lockdown Baseline Lockdown Baseline Lockdown  

Daily PA

 Total steps 9,516.81  

(2,637.43)

4,683.34  

(2,381.67)***

12,010.51  

(3,055.46)

9,268.30  

(3,374.22)***

10,959.78  

(2,567.95)

8,861.49  

(3,302.52)***

11,275.40  

(2,780.22)

8,309.44  

(2,934.34)***

<0.001  

<0.001  

<0.001

 MVPA (min) 41.27  

(24.25)

22.64  

(18.33)***

52.22  

(29.77)

39.78  

(24.13)***

47.74  

(25.96)

45.06  

(28.47)

50.94  

(29.04)

36.69  

(23.16)***

<0.001  

<0.001  

<0.001

 Resting heart rate (bpm) 64.24  

(6.51)

63.04  

(6.65)***

63.76  

(6.51)

62.22  

(6.37)***

63.28  

(6.48)

61.57  

(6.58)***

63.56  

(6.23)

62.11  

(6.49)***

0.38  

<0.001  

0.57

Daily sleep

 Bedtime (hh:mm) 00:25  

(55.50)

00:55  

(68.76)***

11:43  

(46.68)

11:48  

(44.50)

00:00  

(37.00)

00:08  

(40.79)

00:25  

(50.61)

00:57  

(57.62)***

<0.001  

<0.001  

<0.001

 Wake time (hh:mm) 07:31  

(54.38)

08:24  

(64.52)***

06:39  

(37.19)

06:54  

(36.79)**

06:58  

(25.46)

07:25  

(32.71)***

07:38  

(48.69)

08:28  

(49.93)***

<0.001  

<0.001  

<0.001

 TIB (h) 7.07  

(38.64)

7.44  

(43.05)***

6.97  

(40.68)

7.16  

(40.27)*

6.96  

(30.25)

7.28  

(34.91)***

7.15  

(42.10)

7.48  

(45.28)***

0.01  

<0.001

0.11

 TST (h) 6.13  

(32.92) 

6.43  

(37.49) ***

6.05  

(38.02)

6.19  

(36.37)

6.05  

(26.58)

6.30  

(30.05) ***

6.19  

(36.06)

6.46  

(39.86) ***

0.03  

<0.001  

0.14

SJL (min) 57.63  

(47.73)

43.08  

(40.29)***

48.79  

(43.09)

23.62  

(30.05)***

47.42  

(22.15)

17.97  

(32.30)***

50.26  

(40.75)

38.70  

(34.73)**

<0.001  

<0.001  

0.04

WE-WD TIB difference (min) 41.82  

(55.45)

24.63  

(51.09)***

29.10  

(46.50)

11.48  

(38.66)*

31.27  

(52.71)

17.41  

(44.23)

41.64  

(52.29)

24.62  

(44.73)**

0.03  

<0.001  

0.99

†Values have been adjusted for age, sex, and family status.
1Significantly different from Group 1.
2Significantly different from Group 2.
3Significantly different from Group 3.
4Significantly different from Group 4.
aCell’s observed proportion significantly higher than its expected proportion.
bCell’s observed proportion significantly lower than its expected proportion.

P values under P column for daily PA, daily sleep, and SJL are ordered by main effect of group, main effect of time, interaction effect of group and time.

Significance values under daily PA, daily sleep, SJL, and weekend–weekday TIB difference refers to a significant difference from baseline after Bonferroni correction.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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[5, 39] and mental well-being [40], and might be particularly wor-

risome when lockdowns are imposed for prolonged periods. An 

unexpected observation in this respect, the resting heart rate 

dropped by ~2 bpm. As resting heart rate is generally seen as an 

indicator of cardiovascular risk [41], we had expected this to be 

elevated over periods with reduced PA. The underlying cause for 

this reduction in resting heart rate (in the face of lesser activity), 

is not clear and it remains to be seen if this observation persists.

It might be slightly surprising to see the pattern of sleep and 

PA changes in this study, since a recent meta-analysis found a 

positive relationship between regular exercise and sleep [17]. 

The finding here that reduced PA and MVPA were associated 

with gains in TIB should not be taken as evidence to the con-

trary. Instead, this should serve as a reminder that associations 

between variables need to be interpreted with context in mind. 

Here, the highly unusual and disruptive effects of COVID-19 pro-

vide a vastly different environment than typical exercise/sleep 

association studies.

RAR patterns show heterogenous changes due to 
lockdown

A particular advantage of the wearable-based activity data is 

that it allows tracking of PA (steps) over the course of a day. 

By analyzing the temporal distribution of these daily RAR, we 

were able to identify several distinct daily RAR profiles—some of 

which were more prevalent before lockdown, while others were 

more frequently observed during lockdown. Moreover, partici-

pants could be clustered into distinct groups that showed differ-

ential changes in RAR profile composition from pre-lockdown to 

lockdown. Some of these findings could perhaps be attributed 

to sociodemographic differences between these groups, the re-

moval of social zeitgebers and reduction of morning light ex-

posure from later waking.

Our RAR findings revealed that Group 1 could be at-risk of 

declining health in the long term, given the sharp drop in PA 

during lockdown to approximately half of that at baseline. 

Group  1 also evidenced poorer subjective sleep quality scores 

during the lockdown compared with Group  2, which could be 

driven in part by the larger drop in step counts given close links 

between levels of exercise and sleep quality [12]; however as this 

was only taken at one timepoint, we could not exclude the fact 

that this group suffered from poorer quality sleep in general. It 

is also concerning that these individuals comprised 51% of the 

sample which should merit targeted interventions if lockdowns 

continue. Further inspection of sociodemographic variables in 

these individuals revealed that they were predominantly single. 

Perhaps this group of individuals—with fewer childcare re-

sponsibilities and alternative social activity at home, work even 

longer hours resulting in less time for PA and a profound loss of 

differentiation between weekends and weekdays. Attenuation 

in weekday/weekend PA differences seen here could also reflect 

social isolation [42] that has long-term consequences on mental 

well-being. This group of individuals could benefit from setting 

regular routines to provide time for rest, PA and work, and to 

sleep and wake at fixed times at a time when social cues are 

disrupted.

By contrast, Group 2 who woke up the earliest and also slept 

earlier are over-represented by persons who are married with 

children. Having the responsibility to care for the latter would 

serve to drive more temporally structured activity, leading to the 

preservation of a three-peaked RAR even during the lockdown. 

This group tended to better retain their habitual sleep/wake 

timings as well as TST.

Group 3, who had relatively better sleep and PA habits during 

the lockdown—fairly consistent bedtimes and waketimes, large 

reductions in SJL, preserved MVPA and maintenance of ~10,000 

daily step counts, consisted entirely of college degree holders 

(100%), which could have made them better informed about ad-

verse effects of unhealthy behaviors in the long-term. Greater 

sleep regularity [43–45] and lesser weekend–weekday differ-

ences [39] in sleep timing are considered favorable to health. 

Although not statistically significant, there was also a trend for 

resting heart rate, a proxy for cardiovascular risk, to diverge be-

tween Group 1 and Group 3.

In industrialized societies, social zeitgebers play an im-

portant role on sleep schedules [46]. For persons in Groups 1 

and 4, not having to wake up early to go to the office, likely sur-

faced innate delayed sleep timing, thus lessening the impact 

of keeping to traditional work hours on sleep schedules. The 

overall later timings of bedtime and waketime, even for earlier 

sleepers and risers relative to results published elsewhere [47], 

could also be indicative of Singapore’s “westerly” position rela-

tive to its assigned time zone. Later bedtimes and shorter noc-

turnal sleep co-occur with chronic, longitude-related exposure 

to later evening light [48, 49]. Delayed sleep schedules could also 

be further exacerbated by reduced morning and afternoon exer-

cise, as these tend to advance the circadian clock [50].

Finally, the robustness of RAR profiles revealed over compar-

able weeks in January 2019 and 2020 speaks to their utility as 

basis patterns whose automated detection reduces the dimen-

sionality of longitudinal sleep and PA data by integrating both 

measures of sleep timing and distribution of PA across a 24 h 

day. This could simplify identification of persons who might 

benefit from customized counsel during extended lockdowns. 

When data on the long-term impact on health, well-being or 

productivity measurements emerge, RAR may be even refined as 

a public health predictive tool, especially when combined with 

smartphone apps [51].

Strengths and limitations

The data reported here were collected as part of an ongoing 

population-health study. In the context of understanding COVID-

19 related changes, this approach has several clear strengths 

and limitations. First of all, having access to wearable-based 

sleep and PA records for over 1,800 participants provides a par-

ticular opportunity to assess the time courses of change due to 

the COVID-related restrictions and lockdown. This complements 

existing survey studies [9, 12–14, 30] with objectively measured 

data and can aid to further generalize findings. A clear advan-

tage is that the data was collected over the full period spanning 

from a pre-pandemic baseline, to increasing mobility restric-

tions, to lockdown, which allowed for clear comparisons across 

these distinct time periods. Moreover, data for an equivalent 

period in 2019 were available, providing an additional reference 

against which the 2020 pandemic situation could be contrasted 

against. Importantly, the data reported were collected from the 

same participants whose data was available over the 2  years. 

This is an important distinction from “trend data” gathered 

from public convenience-sample sites like Google Trends, or re-

ports from wearable manufacturers, which do not provide such 
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direct within-individual comparison. As Singapore lies next to 

the equator, our sleep timing data is not confounded by sea-

sonal variations [41]. Another advantage of the wearable-based 

methodology was that activity profiles could be tracked with a 

high level of granularity. This allowed us to examine sleep/ac-

tivity profiles in much finer detail than just the daily averages, 

and to identify significant heterogeneity in RAR profiles and 

their changes due to lockdown.

There may be some concerns about the reliability of consumer-

grade sleep tracking. However, validation studies on Fitbit devices 

conducted by several research groups (see [52] for a review of val-

idation studies for sleep, and [53] for PA) have been encouraging, 

demonstrating overall high correlation values (r’s > 0.70) compared 

to gold standard polysomnography/research-grade accelerometers. 

We have also previously shown the overall fidelity of multiday sleep 

tracking in parallel with PSG [54]. The Fitbit is not configured to cap-

ture short daytime naps, which could increase in frequency when 

individuals work from home. These potential limitations notwith-

standing, the additional insights provided by objectively measured 

sleep and activity recordings at this scale are highly valuable. It can 

be expected that the use of commercial sleep/activity trackers will 

be increasingly prevalent in future research.

The interpretation of sleep changes might be served by add-

itional information about sleep disorders and/or chronotype, 

and more detailed information about occupation work schedules 

may add insights to the heterogeneity analysis. Interpretation 

of the lowered resting heart rate findings could also have bene-

fited from information about participants’ self-perceived stress. 

As most of the participants have existing jobs, which for the 

present time appear to be preserved by various governmental 

financial supports, the sleep patterns here are likely, less af-

fected than for a socioeconomically distressed sample. Finally, 

as further lockdowns are likely and the period of exposure to 

widespread mobility restrictions may be extended, the findings 

herein may be time-bounded in their generalizability.

Conclusion

Longitudinal monitoring of sleep and PA patterns through incre-

mental mobility restrictions culminating in lockdown to stem 

the spread of COVID-19 in Singapore showed that adult office 

workers evidenced delays to sleep timings, increases to sleep 

duration, decreases to weekend–weekday differences in sleep 

timing and duration and reductions to step counts, MVPA, and 

resting heart rate levels. However, heterogenous changes be-

tween groups of individuals could be observed upon inspection 

of RAR profiles pre- and during the lockdown. Widescale adop-

tion of the methods described here may help identify persons or 

groups at-risk should the pandemic be protracted.

Supplementary material

Supplementary material is available at SLEEP online.
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