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Abstract
Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and 
clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of 
the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy 
and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating 
the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other 
reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group 
and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical 
procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by 
open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). 
In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines 
and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability 
of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase 
the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical 
settings.
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Statement of Significance

Sleep technology is increasingly used by sleep researchers and clinicians. Wearable sleep trackers are recognized as promising 
tools for large-scale sleep assessment. However, their level of accuracy is still largely unknown, and the validation process is 
challenged by the lack of a standardized framework to evaluate the performance of these devices. In our guidelines, we provide 
step-by-step analytic procedures, an illustrative example, and a set of open-source R functions that can be easily implemented by 
different laboratories for testing and interpreting the performance of different sleep trackers. The proposed analytical framework 
can improve the efficiency and reproducibility of validation studies while promoting the informed adoption of sleep trackers for 
both research and clinical purposes.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/4
4
/2

/z
s
a
a
1
7
0
/5

9
0
1
0
9
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

mailto:luca.menghini.3@phd.unipd.it?subject=
mailto:luca.menghini.3@phd.unipd.it?subject=
https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html


2 | SLEEPJ, 2021, Vol. 44, No. 2

Introduction

Sleep-tracking technology, and particularly consumer sleep 

technology (CST; i.e. multi-sensor wearable sleep trackers 

such as wristbands, armbands, and smartwatches), is increas-

ingly used by sleep researchers and clinicians to track quality, 

quantity, and patterns of sleep in an individual’s free-living 

conditions and for extensive periods [1]. The continuous 

passive tracking of sleep can generate massive datasets (big 

data), opening an unprecedented window of opportunity to 

investigate sleep in relation to a wide range of factors impli-

cated in health and disease [2–4].

The widespread usage of CST by the general population, 

their limited cost and low level of expertise required are among 

the main reasons for their growing popularity within the scien-

tific sleep community. Moreover, the recent implementation of 

miniaturized multisensory systems able to integrate accelerom-

eters with a broad range of other biosensors capturing physio-

logical (e.g. cardiac data) and environmental information (e.g. 

environmental noise) has further enhanced the potential of CST 

to deeply explore sleep (sleep composition in addition to sleep/

wake patterns) and its physiology (e.g. sleep autonomic func-

tion) [2–4]. Consequently, CST is viewed by sleep researchers as a 

promising cost-effective tool to enable large-scale sleep assess-

ment and advance the field of sleep and circadian science [5].

Despite these advantages, the validity, accuracy, and re-

liability of CST devices are still poorly supported by empirical 

data, a crucial and overlooked factor in their adoption (see de 

Zambotti and colleagues [1]). The unstandardized, undisclosed, 

and often unvalidated data outcomes and algorithms are among 

the main challenges the scientific community faces in using CST 

[1, 5–7]. As recommended by the American Academy of Sleep 

Medicine (AASM), “further CST data validation regarding device 

accuracy and application within clinical practice is necessary if 

these devices are to be considered part of medical evaluation 

and treatment” [6]. Such a required effort appears to be acknow-

ledged by the CST literature, where an increasing number of val-

idation studies has been reported [3, 8]. Nevertheless, the slow 

pace of scientific validation and peer-reviewed publication pro-

cesses is challenged by the relentless pace of the CST industry, 

with new devices and algorithms being introduced every year, 

questioning the generalizability of published results and the ap-

propriateness of the term “validation” itself. Consequently, there 

is a need for more time efficient and standardized validation 

protocols to continuously update the evidence on the perform-

ance (rather than the “validity”) of CST devices [1, 5].

Standardized protocols are also necessary for promoting 

comparison across studies and better interpretation of CST 

outcomes. Indeed, CST performance is currently evaluated by 

a strongly heterogenic and sometimes lax range of methodo-

logical and analytical procedures. For instance, Haghayegh and 

colleagues [9] excluded 50 of the 72 identified articles from their 

review on the accuracy of Fitbit devices also due to ineligible or 

insufficiently described method or outcomes, and they reported 

inconsistencies across multiple aspects such as recording set-

ting, method of reference, and statistical procedures. A similar 

degree of heterogeneity has been reported by other reviews of 

CST validation studies [1, 3], including those evaluating the per-

formance of clinical-grade actigraphy [10]. In addition to the 

diversity in validation protocols, the variety of device features 

implies important differences in terms of analytical techniques 

and also in the terminology used to describe their performance. 

For example, the classic definition of “sensitivity” as the ability 

to detect sleep (useful in a dichotomic sleep/wake classification) 

is inadequate to describe the performance of newer devices pro-

viding more than two levels of classifications (sleep stages).

In sum, our understanding of CST performance is threat-

ened by heterogeneity at various levels (e.g. data collection pro-

cedures, data analysis, device features, and terminology). Such 

complexity highlights the need for a common framework to aid 

comparison across studies, devices, and algorithms, to reduce at 

least some areas of uncertainty.

Initial CST validation guidelines have been introduced by 

de Zambotti and colleagues [1] and largely supported by a con-

sensus panel report [5] following the Sleep Research Society 

sponsored workshop “International Biomarkers Workshop on 

Wearables in Sleep and Circadian Science”, held at the 2018 

SLEEP Meeting of the Associated Professional Sleep Societies in 

Baltimore (Maryland, USA). These efforts highlighted the most 

up-to-date methodological and analytical requirements to 

be met by validation studies, with the goal of promoting fur-

ther development and informed use of CST in the sleep and 

circadian field.

Here, we aimed to integrate these recommendations by pro-

viding step-by-step analytical guidelines to evaluate the per-

formance of sleep trackers compared with reference methods 

such as PSG. The analytical steps are designed to be simple 

and easily accessible, to flexibly fit the prototypical datasets 

used by CST validation studies, and to be applied to any type 

of sensors providing sleep outcomes. Each step is accom-

panied by a set of open-source functions [11] based on the R 

environment [12]. Finally, an empirical sample dataset is used 

to illustrate the recommended steps, and to describe the es-

sential outputs that should be reported in a validation paper. 

The analytical pipeline with example code in R matching the 

step-by-step procedure outlined in the article is available at 

https://sri-human-sleep.github.io/sleep-trackers-performance/

AnalyticalPipeline_v1.0.0.html.

Methods

Step-by-step guidelines for testing the performance 
of sleep-trackers

The following guidelines target prototypical studies reporting on 

sleep trackers performance (i.e. comparing the performance of a 

device in measuring sleep against gold-standard PSG), but they can 

be generalized to several other cases. For instance, although PSG 

has been recommended as the gold-standard to evaluate CST [1, 5], 

we recognize that the comparison of CST devices with other refer-

ence methods, including standard actigraphy and subjective sleep 

reports, can be informative under certain circumstances (e.g. see 

[13, 14]). Similarly, whereas most sleep trackers are increasingly able 

to provide information on sleep staging, it is acknowledged that 

some frequently used devices (including standard actigraphy) can 

only measure sleep/wake patterns. Thus, the proposed guidelines 

are designed with a degree of flexibility to generalize to cases where 

reference methods alternative to PSG are used, or where only the 

sleep/wake pattern is provided. In the following sections, “device” 

indicates any sleep tracker under assessment, whereas “reference” 

refers to any other method against which the device is tested.
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Considering the pace of the CST industry, we encourage the 

use of the term “performance” instead of “validity,” to prevent 

erroneous interpretation of a device as valid when only limited 

information is provided (e.g. a single study), and when device 

functioning can rapidly change as algorithms are updated. 

Also, “CST validation studies” are typically method comparison 

studies. Although method comparison has been considered as 

a special type of validity (i.e. the ability of a measurement to 

reflect what it is designed to measure), the agreement of a new 

method with a gold standard should be more correctly referred 

to its reliability (i.e. the absence of measurement error) [15]. 

Thus, in the present article “performance” refers to the qualities 

of a sleep tracker describing its measurement error (reliability 

and accuracy), as quantified by the agreement with a reference 

method [16, 17].

The procedures described below are strictly focused on 

evaluating such qualities through the computation of the rele-

vant performance metrics on a specific sample of subjects. 

Group comparison (e.g. insomnia patients vs. healthy sleepers) 

or measurement precision (i.e. agreement between repeated 

measurements using the same method) can be addressed with 

traditional statistical tools (e.g. linear regression, test–retest 

comparison) to model the variability of the computed metrics 

(see also [17]). Similarly, common statistical aspects such as 

data distribution, outlier detection, homoscedasticity, and con-

fidence intervals computation are not discussed in detail but 

briefly described at the end of each section, and highlighted by 

the accompanying functions, allowing for informed decision 

about function parameter settings. A flow chart of the recom-

mended analytical procedures is depicted in Figure 1.

Following the description of the analytical steps, the pro-

posed guidelines are applied to a sample of empirical data, 

which is used as an example to illustrate the essential recom-

mended analytical steps to be reported in a “validation paper,” 

and to provide an interpretation of the main outcomes. The data 

were obtained from a sample of 14 healthy adults (30–53 y, 6 

women) recruited from the community of the San Francisco Bay 

Area, who spent a night at the SRI human sleep lab. All partici-

pants gave informed consent and the study was approved by the 

SRI International Institutional Review Board. Standard labora-

tory PSG sleep assessment was performed via the Compumedics 

Grael® HD-PSG system (Compumedics, Abbotsford, Victoria, 

Australia) while participants were also wearing a Fitbit Charge 2 

device (Fitbit Inc.).

Step 1: data structure

The recommended analytical steps rely on minimal methodo-

logical assumptions to generate the optimal data structure. 

First, sleep should be measured simultaneously with the device 

under assessment and a reference method. Second, both device 

and reference recordings should have the same epoch length 

(e.g. 30-s or 1-min). Epoch duration should be adjusted when the 

epoch length differs between device and reference. For instance, 

the AASM standards recommend scoring PSG recordings in 30-s 

epochs [18]. When such length is not allowed by the device, as 

for CST devices providing 1-min epochs, a conversion should be 

performed to aggregate PSG epochs, by preferring “wake” score 

when both sleep and wake are present in either one of the two 

30-s epoch of each minute [19]. Importantly, some CST devices 

do not allow the user to export epoch-by-epoch (EBE) data and 

instead provide only nightly summary sleep measures. In these 

cases, assuming that a replicable procedure is used to syn-

chronize the recordings, it is only possible to evaluate the device 

performance through discrepancy analysis (i.e. by skipping EBE 

data processing and the analyses described in Step 3).

Third, when EBE data is provided, device and reference re-

cordings should be synchronized on an epoch level. The tem-

poral synchronization between the device and the reference 

data recordings is critical as lack of synchronization can strongly 

influence certain outcomes, particularly EBE metrics. Ideally, 

both recordings should be confined to the period between 

lights-off and lights-on (i.e. sharing the same time in bed [TIB]), 

either by synchronizing the starting time before the recording 

or by aligning the epoch after the recording (post-processing), 

provided that device and reference share the same timestamps. 

Several strategies have been proposed to assure the alignment 

between device and reference starting time (e.g. see [20, 21]). 

Although lights-off and lights-on are often automatically deter-

mined by CST algorithms, their correspondence between device 

and reference is required for comparing the measures recorded 

by the two methods.

Fourth, device and reference data should be encoded using 

the same coding system (e.g. 0 = wake in both device and refer-

ence data). The epoch coding system to be used depends on the 

ability of the device and the reference to provide sleep staging. 

Conventionally, most CST devices that provide sleep staging in-

formation consider PSG-based N1 + N2 sleep as “light sleep” and 

N3 as “deep sleep.” Checking these specifications with the device 

manufacturer is recommended. A  categorical coding system 

(e.g. 0 = wake, 1 = N1/N2 or “light” sleep, 2 = N3 or “deep” sleep, 

3 = REM sleep) is used when sleep staging is provided, whereas 

a binary system (e.g. 0 = wake, 1 = sleep) is used when only the 

sleep/wake pattern is available. Finally, both recordings should 

not contain any missing data.

Detailed methodological recommendations (e.g. device set-

ting, synchronization, and experimental protocols) in assessing 

the performance of sleep-tracking technology have been dis-

cussed elsewhere [1, 5]. Once the device and reference data have 

been collected and recoded, the application of the following 

steps assumes the organization of the dataset in a long format 

that includes one column for the subject identifier, one column 

for the epoch identifier, and two columns reporting the device 

and the reference data, respectively (see section 1 of the analyt-

ical pipeline [11]).

Step 2: discrepancy analysis

The analysis of the discrepancies between a new and a refer-

ence method is thought to be the main step to evaluate the suit-

ability of the new method as a substitute of the reference.[16] 

Here, “discrepancy” refers to the difference (bias) and the limits 

of agreement (LOAs) between any device- and reference-derived 

numeric measurement (e.g. total sleep time).

Sleep measures computation

Classical overnight sleep parameters (see [18]) can be easily 

computed from the data structure described at the end of Step 

1. Table 1 provides a definition and a computational procedure 

for each of the main sleep measures to be considered in CST 
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validation studies, including both those derived from sleep/

wake dichotomous data (e.g. provided by actigraphy) and those 

based on sleep staging (e.g. provided by the new generation of 

multi-sensor CST devices).

Individual-level discrepancies

After the computation of the relevant sleep measures, data 

are organized in two columns (device and reference measures) 

matched by subject and used to compute the difference for each 

subject in each measure. In contrast with the data structure de-

scribed in Step 1 (i.e. long form, with one row for each epoch), 

sleep measures and the corresponding discrepancies are struc-

tured in a wide form, with one row for each subject. Specifically, 

when a device is compared with a reference method, the 

reference-derived measures are subtracted from device-derived 

measures (i.e. device − reference), such that positive differences 

Figure 1. Analytical flow chart including the core analytical steps to evaluate the performance of sleep trackers. LOAs, limits of agreement; EBE, epoch-by-epoch; 

PABAK, prevalence-adjusted bias-adjusted kappa; ROC, receiver operating characteristic.
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will be interpreted as device’s overestimations, whereas nega-

tive differences will be interpreted as device’s underestimations. 

It is common practice to graphically represent individual-level 

discrepancies (e.g. Bland–Altman plots, see below), also to high-

light potential outliers in the sample (see section 2.2 of the ana-

lytical pipeline [11]).

Group-level discrepancies

In a subsequent step, discrepancies computed at the individual 

level are used to estimate the systematic and the random com-

ponent of measurement error in the device under assessment. 

As originally proposed by Altman and Bland [22], the former is 

quantified by the systematic bias whereas the random error is 

quantified by the 95% LOAs. Bias and LOAs computation relies 

on three main assumptions: (1) the bias should be independent 

from the size of measurement, (2) random error should be uni-

form over the size of measurement (homoscedasticity), and (3) 

differences should be normally distributed [16]. A function that 

automatically tests each assumption and computes the results 

accordingly is included in 11 (see section 2.3 of the analytical 

pipeline). Here, we briefly discuss how each assumption is 

tested, and how bias and LOAs are computed under each cir-

cumstance (see also [17]).

Constant bias, homoscedasticity, and normally distributed differ-

ences:  When all assumptions are fulfilled, the systematic bias 

is easily computed as the mean of the differences between 

each measure obtained with the device and the reference. In 

this case, the observation of a systematic bias (i.e. significantly 

higher or lower than zero) simply implies the necessity to adjust 

for it by subtracting the mean difference (“calibration index”) 

from device-derived measures. Under the same conditions, 

LOAs are computed as bias ± 1.96 standard deviations (SD) of the 

differences [16, 17].

Proportional bias:  Proportional bias indicates a case where the 

mean difference increases or decreases as a function of the size 

of measurement (SM), that is the “true magnitude” (i.e. based 

on the reference) of the considered sleep measure. For instance, 

it might happen that TST discrepancies are larger for subjects 

with lower “true TST” compared with subjects with higher TST. 

Unless a nonlinear relationship between SM and the bias is de-

tected (which is very unlikely to occur), proportional bias for 

the sleep measure i can be tested and represented using simple 

linear regression:

 
Biasi = b0 + b1SMi. (1)

A statistical test of the slope b
1
, accompanied by the visual in-

spection of Bland–Altman plots (see below), can be used to decide 

how to represent the bias: with equation (1) if b
1
 is significant, as 

the mean difference otherwise [16]. When a proportional bias is 

detected but data are homoscedastic, LOAs are computed as:

95 % LOAsi = Biasi ± 1.96 ×

Ã

1

n

n∑

i=1

[(xDi − xRi)− (b0 + b1SMi)]
2
,

  

  (2)

 

where n is the sample size, and xDi and xRi are the 

i-th sleep measure obtained with the device and the reference, 

respectively.

Heteroscedasticity: Heteroscedasticity indicates a case where 

the random error (i.e. the SD of the differences) increases or de-

creases as a function of SM [15]. Similar to what is indicated for 

proportional bias, heteroscedasticity can be evaluated by visu-

ally inspecting the trend of the differences dispersion over SM 

(Bland–Altman plots) and by applying a linear regression model 

to the absolute values of the residuals (AR) obtained from the 

model reported in equation (1):

 
ARi = c0 + c1SMi. (3)

If c
1
 is significant, data are considered heteroscedastic. To deal 

with heteroscedasticity, data can be log-transformed before 

computing LOAs [16, 23]. Alternatively, when log transformation 

does not remove heteroscedasticity, the SD of the differences 

can be expressed as a function of SM, using the coefficients es-

timated with equation (3) [16]. Under the assumption of nor-

mality, LOAs are then expressed as:

Table 1. Main sleep measures considered in discrepancy analysis

Sleep metric Definition Computation

TST Number of minutes classified as sleep between lights-off 

and lights-on

Sum of epochs classified as sleep × epoch 

length (s)/60

SE Percentage of total sleep time over TIB TST/TIB

SOL Number of minutes classified as wake before the first epoch 

classified as sleep

Sum of epochs classified as wake before 

the first sleep epoch × epoch length 

(s)/60

WASO Number of minutes classified as wake after the first epoch 

classified as sleep

Sum of epochs classified as wake after the 

first sleep epoch × epoch length (s)/60

“Light” sleep duration Number of minutes classified as “light” sleep (the equivalent 

of PSG N1 + N2 sleep) between lights-off and lights-on

Sum of epochs classified as “light” sleep × 

epoch length (s)/60

“Deep” sleep duration Number of minutes classified as “deep” sleep (the equivalent 

of PSG N3 sleep) between lights-off and lights-on

Sum of epochs classified as “deep” sleep × 

epoch length (s)/60

REM sleep duration Number of minutes classified as REM between lights-off and 

lights-on

Sum of epochs classified as REM sleep × 

epoch length (s)/60

Sleep measures are defined assuming a recording confined between lights-off and lights-on. TIB, time in bed (assumed to be the same between device and reference); 

TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; WASO, wake after sleep onset; REM, rapid eye movement; PSG, polysomnography. The computation 

of the latter three measures assumes that sleep staging is provided by both device and reference.
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 95% LOAsi = Bias ± 2.46 (c0 + c1SMi). (4)

Note that in equation (4), the bias is computed depending on the 

first assumption: as the mean difference if independent from 

SM, using equation (1) otherwise.

Deviation from normality: Although departure from normality 

is thought to be less problematic for LOAs computation com-

pared with other statistical contexts [16], distributions that are 

very skewed or have long tails should be analyzed with caution. 

Logarithmic transformation (see above) and nonparametric ap-

proaches (e.g. reporting centiles or proportions of differences 

falling outside cutoff values) have been proposed as strategies 

to deal with these cases [15, 16]. Only the former is implemented 

in our functions (see sections 2.3 and 2.4 of the analytical pipe-

line [11]).

Independently of the specific bias and LOAs computation, 

confidence intervals (CI) are reported to quantify the uncer-

tainty in each of the estimated discrepancy metrics, and to 

express bias significance [24, 25]. Alternative approaches such 

as nonparametric or bootstrap CI should be used when a de-

viation from normality is detected or when the sample size is 

small (see [26, 27]). Finally, outliers and influential cases should 

be carefully evaluated with both graphical (e.g. Bland–Altman 

plots) and statistical procedures [28]. Excluding such cases is re-

commended only under specific circumstances that should be 

clearly explained (e.g. a participant with only 4  h of TST in a 

sample of good sleepers).

Bland–Altman plots

The Bland–Altman plot [22] is widely considered as a core ana-

lysis for evaluating the interchangeability between two methods 

of measurement, and it is the most popular method to measure 

agreement between continuous medical measurements [29]. 

The Bland–Altman plot is the graphical representation of what 

is described in the previous section, in which the differences 

between device- and reference-derived measures are plotted 

against SM [16]. In addition to clearly visualizing bias and 

LOAs, it allows to graphically inspect assumptions of constant 

bias over SM and homoscedasticity, and to highlight potential 

outliers. Whereas in the original Bland–Altman plot SM is rep-

resented by the mean of the two measurements [22], reference-

derived measures (and particularly PSG measures) have been 

recommended [1, 5] and frequently adopted [30, 31] to represent 

SM (i.e. on the x-axis). Examples of Bland–Altman plots adjusted 

for various cases of compliance with assumptions are provided 

in the illustrative example below (see Figure 2).

Step 3: EBE analysis

The quantification of the agreement between a device and 

a reference method depends on the nature of the considered 

data [32]. In the previous step, we discussed the relevant per-

formance metrics for numeric variables (i.e. sleep measures). 

Here, we discuss the essential procedures to be considered with 

binary or categorical data, namely, EBE analysis, to be used when 

the evaluated sleep tracker allows to export EBE data. EBE ana-

lysis is the preferred approach to assess the accuracy of a device 

in sleep and wake classification, compared with a gold standard 

[1], and it has been widely used to test standard actigraphy 

against PSG [10, 21]. As in the case of discrepancy analysis, the 

data structure described at the end of Step 1 is the starting point 

for analyzing the data on an EBE level.

Error matrices

Error matrices (also referred to as confusion matrices or contin-

gency tables) are cross-tabular representations in which rows 

and columns indicate the frequency of classification categories 

for each of the two methods [32]. Importantly, error matrices are 

the basis of most metrics indicating the performance of binary 

measurements, including the widely reported sensitivity and 

specificity. In sleep detection, classic definitions of sensitivity 

(i.e. ability to correctly classify sleep epochs) and specificity (i.e. 

ability to correctly classify wake epochs) rely on binary scorings 

of sleep/wake epochs, as provided by standard actigraphy and 

other sleep trackers (see [10]). With the increasing capability of 

CST to perform sleep staging [2], such definitions are updated 

to generalize to non-binary data (i.e. wake, “light,” “deep,” and 

REM sleep). In this framework, “sleep-stage sensitivity” refers to 

the device’s ability to correctly detect a given stage, such as REM 

sleep, whereas “sleep-stage specificity” is the ability to correctly 

detect all other considered stages. Careful interpretation of the 

terminology is necessary when interpreting EBE sleep stage 

classification, to avoid ambiguity with classic (binary-based) 

definitions.

Table 2 shows the structure of an error matrix obtained from 

a device and a reference method providing sleep staging infor-

mation. Each cell contains the number of epochs in a given con-

dition (e.g. cell C reports the number of epochs scored as “deep” 

sleep by the device that are scored as wake by the reference). 

From Table  2, sleep-stage sensitivity is computed as the pro-

portion of epochs classified in a given stage (e.g. REM sleep) by 

both methods over the total number of epochs classified in that 

stage by the reference, whereas specificity is computed as the 

proportion of epochs classified in any of the other stages (e.g. 

wake and NREM sleep) by both methods over the total number 

of epochs classified as any of the other stages by the reference. 

For instance, REM sensitivity is calculated as P/(M + N + O + P), 

whereas REM specificity is computed as ([A + B + C] + [E + F + G] + 

[I + J + K])/([A + B + C + D] + [E + F + G + H] + [I + J + K + L]).

Error matrices can be computed either by considering 

the total number of epochs in the sample (i.e. “absolute 

error matrix,” with each cell reporting the sum of epochs in 

a given classification category, regardless of the subjects) 

or by accounting for the variability between subjects (see 

section 3.1 of the analytical pipeline [11]). In the second case, 

recommended by de Zambotti and colleagues [1], a matrix 

is generated per each subject (individual-level matrix), and 

the value in each cell is divided by the corresponding mar-

ginal frequency based on the reference (i.e. the “Total refer-

ence” column in Table  2), resulting in a “proportional error 

matrix” that shows the estimated stage-specific sensitivities 

and specificities per subject. Then, individual-level matrices 

are averaged to generate a group-level proportional matrix, 

with each cell reporting the average proportion of epochs in 

each classification category, with the corresponding SD and 

95% CI. The advantage of such representation of EBE per-

formance, in addition to including the essential EBE metrics 

(described in the following sections), is the immediate in-

terpretation of the nature of device misclassifications (see 

example in Table 5).
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Individual-level EBE metrics

Table  3 shows an overview of the most widely reported EBE 

metrics used to evaluate the performance of CST devices (see 

also [32, 33]), which can be computed by applying the functions 

included in our pipeline [11] (sections 3.2 and 3.3) to the data 

structure described in at the end of Step 1. Although sensitivity 

and specificity are perhaps the most important metrics, and in 

most cases they are sufficient to describe a device performance, 

metrics such as positive predictive value (PPV; sometimes called 

“precision”) might be useful to provide further details (e.g. to 

estimate the probability of a given epoch to be in a given stage 

based on the device classification).

Group-level EBE metrics

When considering group-level accuracy metrics, the advan-

tage of evaluating EBE data at an individual level becomes more 

evident. Indeed, the common practice of considering the total 

number of epochs regardless of individual differences would re-

sult in a single value for each metric (e.g. accuracy = 0.92, specifi-

city = 0.64). However, EBE metrics are sample-based estimates of 

population parameters, and they should be accompanied by in-

formation on their variability (SD) and uncertainty (CI). A func-

tion that computes both “absolute” (i.e. based on the total count 

of epochs in the sample) and “averaged” group-level EBE metrics 

is included in our pipeline [11] (section 3.1). The second modality 

is recommended. The same statistical considerations regarding 

CI computation, sample size, and outliers reported for discrep-

ancy analysis (Step 2) apply also to group-level EBE metrics and 

error matrices.

Additional EBE analyses

As described in detail by Watson and Petrie [32], binary data 

can be analyzed with the McNemar’s test [34], which evaluates 

the significance of systematic differences between proportions 

of “positive” (e.g. sleep) classifications from the two methods, 

or the Cohen’s kappa [35], which quantifies the proportion of 

classification agreement that is not due to chance, ranging from 

0 to 1. As is recommended for other metrics, the kappa coeffi-

cient should be reported with the corresponding CI. Of note, the 

kappa coefficient is sensitive to both the number of categories 

(i.e. the higher the number of categories and the lower the 

kappa) and the prevalence of each condition. In sleep detection, 

sleep epochs are usually more prevalent than wake epochs, and 

this would result in cases of “high agreement but low kappa” 

[36]. A  prevalence-adjusted bias-adjusted kappa (PABAK) has 

been proposed by Byrt and colleagues [33], and it is recom-

mended for evaluating agreement in sleep detection. Both the 

McNemar’s test and the kappa coefficient can be applied to 

both binary (i.e. sleep/wake) and categorical classifications (i.e. 

sleep staging), with the latter requiring to be dichotomized for 

each stage before testing. Further analyses might include the 

receiver operating characteristic (ROC) curve, which consists 

in plotting sensitivity against (1 – specificity). ROC curves are 

mainly used to determinate optimal cutoff for diagnostic tests, 

but they can be also applied to compare the accuracy of two 

devices (or two algorithms used by the same device) with a ref-

erence method [32].

Although we believe that the metrics reported in Table  3 

(and particularly sensitivity and specificity) are sufficient for 

describing the EBE performance of a CST device, these additional 

analyses can be used to test systematic differences between the 

two methods, and are provided in our pipeline [11] (section 3.3).

Results

Illustrative example

Here, the proposed guidelines are applied to the sample of empir-

ical data described at the beginning of the previous section, and 

the core outputs to be reported in publication reports evaluating 

the performance of sleep tracker devices are depicted.

Data structure

PSG sleep records were scored in 30-s epochs (wake, N1, N2, N3, 

and REM sleep) according to AASM criteria, and EBE Fitbit data 

were obtained through Fitabase (Small Steps Labs LLC.). PSG 

and Fitbit 30-s epochs confined between lights-off and lights-on 

were matched and organized with the data structure described 

in Step 1 (see section 1 of the analytical pipeline [11]). In this 

example, both PSG and Fitbit epochs were encoded as: 0 = wake, 

1 = “light” sleep (PSG-based N1 + N2), 2 = “deep” sleep (PSG-based 

N3), and 3 = REM sleep.

Discrepancy analysis

Results of group-level discrepancy analysis are reported in 

Table  4. In the sample, “light” sleep duration is overestimated 

by the device (i.e. bias is positive, with both CI above zero), 

whereas REM sleep duration does not show a significant bias 

(i.e. zero is included within the CI). The systematic component 

of measurement error in “light” sleep duration can be “cor-

rected” by removing 34.54 min (“calibration index”) to all device 

“light sleep” durations. All other sleep measures show a nega-

tive proportional bias, whose magnitude (and significance) de-

pends on SM (expressed as the range of PSG-derived measures). 

Figure 2 shows the corresponding Bland–Altman plots for some 

of the considered measures, and it highlights the bias trend over 

SM. For instance, in the case of WASO and “deep” sleep dur-

ation the measure is underestimated by the device for cases 

showing higher PSG-derived measures (i.e. with PSG-derived 

WASO higher than 40 min, and N3 duration higher than 60 min), 

whereas the bias is not significant for lower values. On the con-

trary, TST and SE are overestimated by the device for subjects 

with lower PSG-derived measures (i.e. TST lower than about 

300 min, SE lower than 85%), whereas the bias is not significant 

for higher values. In all these cases, the bias is represented as 

a linear regression with intercept b
0
 and slope b

1
 (see equation 

(1) in Step 2  “Group-level discrepancies”), and “corrections” of 

device-derived measures should be based on SM.

Data are homoscedastic (the variability of the differences is 

constant over SM) for both “light” sleep duration and TST, and 

LOAs are computed as bias ± 1.96 SD of the differences and using 

equation (2) (i.e. bias ± 1.96 SD of the residuals of the regression 

model representing the bias), respectively (see Step 2  “Group-

level discrepancies”). In both cases, LOAs are represented in 

Figure 2 as parallel to the bias line.

In contrast, heteroscedasticity was detected for SE, SOL, 

and “deep” sleep duration, where LOAs were modeled as a 

function of SM. As in cases of proportional bias, they are ex-

pressed as a linear regression with intercept c
0
 and slope c

1
 

(see equation (3) in Step 2  “Group-level discrepancies”). The 
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sign of c
1
 determines the direction of heteroscedasticity, with 

higher random error (i.e. wider LOAs) for higher PSG-derived 

SOL and “deep” sleep duration, and lower SE. Further cases 

of heteroscedasticity (WASO) or deviation from normality 

(REM sleep duration) were addressed by log transforming the 

measures before computing LOAs. Consequently, LOAs are ex-

pressed as a function of SM, which is multiplied by a slope 

determined based on the log-transformed differences (see 

[23]). In all these cases, the minimal detectable change de-

pends on SM.

Figure 2. Bland–Altman plots of the sample data. Red solid lines indicate bias, whereas gray solid lines indicate the 95% LOAs, both with their 95% CIs (dotted lines). 

Black points indicate individual observations, and the density diagram on the right side of each plot represents the distribution of the differences. Plots are adjusted 

for the specific case of compliance with the assumptions for discrepancy analysis: all fulfilled (“light” sleep duration), proportional bias but homoscedastic differences 

(total sleep time), constant bias but heteroscedastic differences (REM sleep duration), both proportional bias and heteroscedasticity (sleep efficiency and “deep” sleep 

duration), and LOAs based on log-transformed differences (wake after sleep onset and REM sleep duration).

Table 2. Error matrix for evaluating sleep stages detection

Device

Wake “Light” “Deep” REM Total reference

Reference Wake A B C D (A + B + C + D)

“Light” E F G H (E + F + G + H)

“Deep” I J K L (I + J + K + L)

REM M N O P (M + N + O + P)

Total device (A + E + I + M) (B + F + J + N) (C + G + K + O) (D + H + L + P) Total number of scored epochs

“Light”, PSG-derived N1 + N2; “deep”, PSG-derived N3; REM, rapid eye movement sleep.
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In all cases, bias and LOAs are reported with their 95% CI 

computed using parametric bootstrap with 10,000 replicates 

(bootstrap CI were preferred to default classic CI due to small 

sample size and skewed distributions). When all assumptions 

are fulfilled (i.e. “light” sleep detection), CI are reported for 

the mean difference (along with its SD) and LOAs estimates, 

whereas when a proportional bias and/or heteroscedasticity is 

detected, CI are reported for the regression intercepts (b
0
 and c

0
) 

and slopes (b
1
 and c

1
). When a log transformation was applied, 

the LOAs’ CI are reported for the back-transformed slope coef-

ficient [23].

EBE analysis

Table  5 shows the group-level proportional error matrix gen-

erated from the sample dataset. As recommended, individual 

error matrices were computed for each subject, and each cell 

was divided by the corresponding marginal value for the refer-

ence. Thus, each cell includes the average proportion of each 

classification category over the number epochs classified as the 

corresponding stage by PSG. Values in the diagonal represent 

sleep-stage sensitivity, suggesting a better ability of the device 

to correctly classify “light” sleep (with about 80% of PSG-based 

N1 + N2 epochs being correctly classified), whereas poorer per-

formance is suggested for “deep” sleep detection (with more 

than half of PSG-based N3 epochs being erroneously classified 

as “light” sleep by the device). Similarly, a relevant proportion 

of PSG-based wake and REM epochs (from 11% to 44%) are con-

sidered as “light” sleep by the device, clarifying the results of 

Step 2 regarding the overestimation of “light” sleep. This pattern 

of results is also confirmed by stage-specific specificity, which 

is significantly higher than 90% for all stages but “light” sleep, 

and by the PABAK coefficient, which is significantly higher than 

0.60 for wake and “deep” and REM sleep but lower than 0.45 for 

“light” sleep (see [11], section 3.3).

Note also that the 95% CI in Table 5 indicate that estimates 

are more precise for certain categories (e.g. the percentage of 

“light” sleep considered as wake) compared to other categories 

(e.g. “deep” and REM sleep sensitivity) which show higher vari-

ability between participants (as indicated by the SD), and which 

should be interpreted with more caution.

Discussion

This work offers a detailed but easily accessible standardized 

framework and practical tools for analytically testing the per-

formance of sleep-tracking technology against a reference 

method (e.g. PSG), and is based on recent recommendations for 

evaluating and using CST [1, 5]. The article is accompanied by an 

open-source set of R functions (available at https://github.com/

SRI-human-sleep/sleep-trackers-performance) [11], and a con-

crete example of the application of the analytical pipeline on a 

sample empirical dataset.

We believe this work can increase the time efficiency, quality, 

and replicability of validation studies, mitigating the excessive 

degree of heterogeneity in both methodological and statistical 

procedures currently used in CST validation, with the ultimate 

goal of improving the informed adoption of CST in research 

and clinical settings. The generalizability and reproducibility of 

the proposed analytical steps match with the flexibility of the 

R functions, which are designed to allow modifications of their 

arguments to fit specific analytical needs (e.g. logarithmic trans-

formation and bootstrapped CI).

The added value of the recommended analytical steps be-

comes more evident when their interpretation is compared to 

less appropriate but widely used analytical techniques. For ex-

ample, although the correlation between device and reference 

measures is often used to evaluate CST performance [10], it 

simply indicates their degree of linear association, with no in-

formation on their agreement (e.g. a systematic difference of 

50 min is plausible even between two perfectly correlated TST 

measurements) [22, 32, 37]. Moreover, correlation coefficients 

are highly sensitive to the range of measurement (the broader 

the range and the higher the correlation), but insensitive to SM 

Table 3. EBE accuracy metrics for sleep/wake and sleep stages detection

EBE metric Binary definition (sleep/wake) Categorical definition (sleep staging)

Sensitivity Proportion of “true” sleep epochs (i.e. based on 

the reference) that are correctly classified as 

sleep by the device.

Proportion of epochs classified as a given sleep stage by the refer-

ence that are correctly classified as that stage by the device.

Specificity Proportion of “true” wake epochs (i.e. based on 

the reference) that are correctly classified as 

wake by the device.

Proportion of epochs not classified as a given stage by the refer-

ence that are correctly not classified as that stage by the device.

Accuracy Proportion of correctly classified sleep and wake 

epochs over the total number of epochs.

Proportion of correctly classified epochs for a given stage over the 

total number of epochs.

PPV Proportion of epochs classified as sleep by the 

device that are “true” sleep epochs (i.e. based 

on the reference).

Proportion of epochs classified as a target stage by the device that 

are classified as that stage by the reference.

NPV Proportion of epochs classified as wake by the 

device that are “true” wake epochs (i.e. based 

on the reference).

Proportion of epochs not classified as a target stage by the device 

that are not classified as that stage by the reference.

PI Proportion of “true” sleep epochs (i.e. based on 

the reference) over the total number of epochs. 

Proportion of epochs classified as a target stage by the reference 

over the total number of epochs.

BI Difference in sleep epoch proportion (i.e. sleep 

epochs over the total number of epochs) be-

tween device and reference.

Difference between device and reference in the proportion of 

epochs classified as a target stage over the total number of 

epochs.

Metrics are defined based on proportions (generally ranging from 0 to 1), but it is common to report them as percentages, by simply multiplying the result by 100. 

PPV, positive predictive value; NPV, negative predictive value; PI, Prevalence Index; BI, Bias Index.
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(i.e. proportional bias), and the same applies to intraclass correl-

ation coefficients and t-tests [15, 29, 37].

In contrast, bias and 95% LOAs are sample-based estimates 

of the agreement between device and reference measurements. 

Such metrics are independent from the range of measurement, 

and the relationship between differences and SM (proportional 

bias) can be easily modeled (equation (1)) [16]. Moreover, they 

are more immediately interpretable than correlations or t-test 

outputs, as they separately quantify the most likely difference to 

occur (systematic bias) and the range within which most differ-

ences are expected to lie (random error), both expressed in the 

original measurement unit (e.g. min). In addition to discrepancy 

analysis, EBE metrics included in the proportional error matrix 

(Table 5) allow one to explore more in depth the nature of the 

observed discrepancies (e.g. high TST discrepancies can be due 

either to low sensitivity or to low specificity), and stage-specific 

EBE metrics provide further information on which stages are 

more accurately detected by the device.

Most importantly, the information provided by bias and LOAs 

can ultimately be used by sleep researchers and clinicians to po-

tentially “correct” the observed measures based on the results of 

previous method comparison studies. For example, a constant 

bias over SM (“calibration index”) can be simply subtracted from 

device measures in order to reduce systematic over- or under-

estimations. Differently, a proportional bias implies that dif-

ferences should be modeled based on SM. However, since only 

device measures will be available in real practice, they can be 

used to quantify SM and to estimate the calibration index cor-

responding to each case.

For instance, in our sample dataset we highlighted a 

proportional bias for TST, implying that PSG measures are 

underestimated by the device for subjects/nights with longer 

TST. Clinicians and researchers could use such information 

to “correct” the measures collected with the evaluated device 

under similar conditions and in similar populations as in the 

reference dataset, in order to obtain more accurate estimates 

of “true” (reference-derived) measures. As an example, a TST 

measure of 400 min is likely to be underestimated by the Fitbit 

Charge 2. Sleep scholars/practitioners can use the information 

reported in Table 4 for TST (i.e. bias = 56.42 min − 0.15 × ref) to 

compute the “calibration index” corresponding to the observed 

measure (bias = 56.42 min − 0.15 × 400 ms = −3.48 min) and apply 

the correction (TST
corr

 = 400 min + 3.58 min = 403.58 min). In con-

trast, the same measures showed a Pearson correlation of 0.94 

(almost perfect), an ICC(2,1) of 0.94 (excellent reliability [38]), 

and a paired t-test indicating no statistically significant differ-

ences (t(13) = 1.13, p = 0.28). The latter pattern of results would 

simply suggest to use the device for obtaining measures almost 

perfectly associated with those obtainable with the reference, 

without providing any information on systematic bias, random 

error and EBE accuracy, and they cannot be used to calibrate fu-

ture measurements.

Both bias and LOAs should be considered when reporting on 

a sleep tracker performance, as excessively wide LOAs might 

suggest a poor performance even in cases where the bias is not 

significant [1]. When data are homoscedastic, the “minimal de-

tectable change” (i.e. the smallest change detected by a method 

that exceed measurement error) can be expressed by one-half 

the difference between the upper and lower LOA [17]. For in-

stance, in our sample dataset we found a minimal detectable 

change 39.25 min for TST. What “excessively wide” means (i.e. 

“minimal clinical important change”) strictly depends on the 

Table 5. Group-level proportional error matrix of the sample data

Device

Wake “Light” “Deep” REM

Reference Wake 0.62 (0.16) [0.54, 0.70] 0.31 (0.18) [0.22, 0.39] 0.02 (0.02) [0.01, 0.03] 0.06 (0.10) [0.00, 0.10]

“Light” 0.05 (0.03) [0.04, 0.07] 0.79 (0.10) [0.74, 0.84] 0.06 (0.06) [0.03, 0.09] 0.09 (0.07) [0.06, 0.12]

“Deep” 0.02 (0.02) [0.00, 0.03] 0.53 (0.24) [0.41, 0.65] 0.44 (0.24) [0.32, 0.56] 0.01 (0.02) [0.00, 0.02]

REM 0.03 (0.04) [0.00, 0.05] 0.27 (0.29) [0.12, 0.41] 0.02 (0.04) [0.00, 0.04] 0.67 (0.33) [0.52, 0.85]

“Light”, PSG-based N1 + N2; “deep”, PSG-based N3; REM, rapid eye movement sleep. Results are reported as mean (standard deviation) [95% confidence intervals].

Table 4. Group-level discrepancies computed on the sample data

Measure Device mean (SD) Reference mean (SD) Bias [95% CI]

TST (min) 339.32 (60.61) 332.57 (67.25) 56.42 − 0.15 × ref b
0
 = [10.03, 104.04] b

1
 = [−0.28, −0.03]*

SE (%) 88.07 (4.53) 86.08 (6.90) 58.10 − 0.65 × ref b
0
 = [31.53, 98.51] b

1
 = [−1.11, −0.35]*

SOL (min) 11.36 (14.81) 13.75 (11.60) 7.15 − 0.69 × ref b
0
 = [2.29, 20.15] b

1
 = [−2.53, −0.30]*

WASO (min) 33.82 (12.76) 38.18 (19.79) 26.13 − 0.80 × ref b
0
 = [8.10, 49.05] b

1
 = [−1.56, −0.23]*

“Light” (min) 234.64 (56.85) 200.11 (48.52) 34.54 (52.86) [7.75, 61.43]*

“Deep” (min) 50.04 (22.58) 75.61 (23.71) 23.70 − 0.65 × ref b
0
 = [−3.37, 61.43] b

1
 = [−1.16, −0.22]*

REM (min) 54.64 (27.39) 56.86 (23.11) −2.21 (36.23) [−19.79, 16.21]

TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; WASO, wake after sleep onset; “light”, PSG-derived N1 + N2; “deep”, PSG-derived N3; REM, rapid  

eye movement sleep; SD, standard deviation; CI, confidence intervals; LOA, limit of agreement; ref, reference-derived measures (i.e. PSG, used to quantify the size  

of measurement).

*Cases showing a significant bias, proportional bias or heteroscedasticity. When a proportional bias was detected, a linear model predicting the discrepancies  

by the corresponding PSG measures was specified, and 95% CI were reported for the model’s intercept (b0) and slope (b1), as indicated in equation (1). When  

heteroscedasticity was detected, a linear model predicting the absolute residuals of the previous model by PSG-derived measures was specified, and 95% CI  

were reported for the model’s intercept (c0) and slope (c1), as indicated in equation (3).
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specific application and target population of the device under 

assessment. Although some general criteria have been proposed 

for sleep measures (e.g. see [39]), their rationale is still debatable, 

and interpretation of LOAs should be made on a case-by-case 

basis [1]. The same applies to EBE metrics, for which there is 

currently no consensus on threshold values defining a “good” 

performance. In both cases, the interpretation of the outcomes 

should be based on the specific application and target popula-

tion [1, 5].

As a further advantage, the recommended performance met-

rics can be applied on device-reference comparisons across dif-

ferent samples (e.g. insomnia patients vs. good sleepers) and 

conditions (e.g. pre-to-post sleep interventions), acknowledging 

that CST performance can be affected by multiple factors [2, 

5]. Individual-level discrepancies can be used as outcome vari-

ables in regression models to investigate the role of potential 

confounders (e.g. sex and age). Critically, the comparison of per-

formance metrics obtained with different firmware/algorithm 

versions is important to update scientific information on de-

vice performance. Similarly, EBE agreement can be used as an 

outcome variable to model within-night processes (e.g. cardiac 

activity).

Finally, the advantage of a standardized framework for CST 

evaluation is particularly evident when comparing results across 

studies. For instance, the results reported in the last section can 

be compared with those obtained by de Zambotti and colleagues 

[20], in which the same device was tested on a different sample, 

reporting results in the same output format. In line with the 

previous study, our results suggested higher device specificity 

for “light” compared to both “deep” and REM sleep, with a large 

proportion of PSG-derived “deep” sleep epochs being classified 

as “light” sleep by the device. Such degree of comparability is ex-

pected to facilitate replicable evidence, as well as device-specific 

reviews and meta-analyses.

Of note, the recommended analytical procedures strictly 

rely on the methodological assumptions summarized in Step 1 

and exhaustively discussed in previous guidelines [1, 5]. On the 

one hand, such best practices (e.g. gold standard comparison, 

device settings, and recording synchronization), in addition 

to the analytical steps described in this work, are critical for 

conducting rigorous validation studies that will advance our 

knowledge on sleep trackers performance. In this sense, our 

analytical guidelines should be considered as a first step to-

ward a standardized and time efficient validation pipeline to 

be integrated with previous recommendations. On the other 

hand, the implementation of our pipeline per se is not suffi-

cient to guarantee the “validation” of a device. As proposed by 

Grandner et al.[7], an optimal “validation cycle” would include 

(1) laboratory-based comparison with PSG, (2) field-based com-

parison with ambulatory measures, and (3) validation for spe-

cific populations. Although the recommended procedures can 

be applied in each of these phases, methodological assump-

tions should be adjusted to specific cases. For instance, in am-

bulatory settings the experimenter cannot directly set lights-on 

and lights-off times. In such settings, alternative techniques 

such as self-reported sleep logs should be used to ensure that 

device and reference recordings are synchronized and that 

sleep measures are comparable [40]. Moreover, if a CST device 

classifies motionless wakefulness as sleep, this would prob-

ably generalize to diurnal hours [10]. Thus, considering and re-

porting misclassifications on a 24 h period will be necessary to 

exhaustively evaluate device performance.

In conclusion, given the increasing interest and use of CST, it 

is hoped that this article, and the corresponding analytical pipe-

line, will contribute to the rigor of CST validations and informed 

use, which is a fundamental step to reach the level of accuracy of 

these technologies required by research and clinical applications.
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