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s u m m a r y

Sleep is characterized by an intricate variation of brain activity over time. Measuring these temporal

sleep dynamics is relevant for elucidating healthy and pathological sleep mechanisms. The rapidly

increasing possibilities for obtaining and processing sleep registrations have led to an abundance of data,

which can be challenging to analyze and interpret. This review provides a structured overview of ap-

proaches to represent temporal sleep dynamics, categorized based on the way the source data is com-

pressed. For each category of representations, we describe advantages and disadvantages. Standard

human-defined 30-s sleep stages have the advantages of standardization and interpretability. Alterna-

tive human-defined representations are less standardized but offer a higher temporal resolution (in case

of microstructural events such as sleep spindles), or reflect non-categorical information (for example

spectral power analysis). Machine-learned representations offer additional possibilities: automated sleep

stages are useful for handling large quantities of data, while alternative sleep stages obtained from

clustering data-driven features could aid finding new patterns and new possible clinical interpretations.

While newly developed sleep representations may offer relevant insights, they can be difficult to

interpret in for example a clinical context. Therefore, there should always be a balance between

developing these sophisticated sleep analysis techniques and maintaining clinical explainability.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The sleeping brain generates specific patterns of electrophysi-

ological activity. This activity changes according to organized cycles

of alternating stadia, with a duration of 90e120 min [1]. Gold

standard polysomnography (PSG) is primarily based on the non-

invasive measurements of electrical activity from the cortex (i.e.,

EEG). Traditionally, signals obtained from PSG measurements are

divided into time windows with a duration of 30 s, also called

epochs. Then, based on standardized rules these epochs are

manually assigned to either wake, REM sleep, or one of three cat-

egories of NREM sleep (N1-3). From these sleep stages, overall

statistics can be calculated, such as total sleep time. These data are

used in various ways, including the diagnostic process of a variety

of sleep disorders.

The first whole-night sleep report was published in 1937. Since

the discovery of dream sleep in 1952, much research has been

focused on the basic neurophysiology of sleep [2]. Since the dis-

covery of sleep apnea in the late 1960's, sleep recordings have also

become very important for the diagnosis of a wide spectrum of

sleep disorders.

Although PSG measurements have been used for a long time,

understanding the functions and underlying mechanisms of sleep

remains a large challenge [3]. More specifically, the exact mecha-

nisms underlying several sleep disorders, such as insomnia and

sleep-related movement disorders, are currently unknown [4,5].

One reason for the incomplete knowledge about sleep may be that

the transition from the underlying physiological signals to sleep

stages and/or statistics induces categorization and temporal

compression, possibly not reflecting all relevant changes in sleep

characteristics over the course of the night [6].

To obtain more information about temporal sleep dynamics,

researchers have continuously been searching for both new* Corresponding author. De Zaale, Eindhoven, the Netherlands.

E-mail address: l.w.a.hermans@tue.nl (L.WA. Hermans).

Contents lists available at ScienceDirect

Sleep Medicine Reviews

journal homepage: www.elsevier .com/locate/smrv

https://doi.org/10.1016/j.smrv.2022.101611

1087-0792/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Sleep Medicine Reviews 63 (2022) 101611

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:l.w.a.hermans@tue.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.smrv.2022.101611&domain=pdf
www.sciencedirect.com/science/journal/10870792
http://www.elsevier.com/locate/smrv
https://doi.org/10.1016/j.smrv.2022.101611
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.smrv.2022.101611


technologies to measure sleep and additional ways to analyze

existing sleep recordings. The possibilities to study sleep dynamics

have greatly increased since the availability of the first computer

systems. The current spectacularly improved computational power

has allowed for studying polysomnography signals on a higher

resolution than 30 s [7,8]. Additionally, the recent increased interest

towards implementing machine learning applications in healthcare

has yielded newways to analyze sleep [9,10]. Moreover, alternative

measuring techniques using wearable devices are emerging,

probably resulting in the availability of manymore sleep recordings

in the near future [11,12].

We now have increasing possibilities for both representing and

measuring sleep, yielding important opportunities to learn more

about both healthy and pathological sleep. However, we also face

the challenge of translating this abundance of information to a

manageable set of clinically relevant characteristics. This review

provides an overview of existing approaches that can be used to

represent the temporal dynamics of sleep. Within a structured

framework, we distinguish different types of representations and

describe their advantages and disadvantages. We provide consid-

erations for using these representations in research to better un-

derstand sleep mechanisms, with a focus on sleep disordered

populations. Finally, technical details regarding the various

methods are described as supplementary data.

Methods

A systematic search was performed to obtain a complete over-

view of existing approaches that can be used to represent the

temporal dynamics of sleep. Extensive literature searches were

undertaken, initially in June 2020 and updated in December 2021,

using the Pubmed, Scopus and Web of Science scientific databases.

A broad selection of search terms was used to screen a compre-

hensive selection of entries (see supplemental section S1.1).

Searches were adapted to each database, using appropriate

database-specific indexing terms and syntax. Reference lists of

selected papers were also screened. We excluded languages other

than English and one-page conference abstracts, and we only

considered representations that were used to assess sleep of hu-

man adults. Because of the extensive nature of the topic, we limited

ourselves to including the most important articles containing

relevant information about each type of representation, instead of

providing an in-depth review of all papers belonging to a certain

topic. Therefore, often-used representations, such as sleep spindles

and automated sleep staging, do not contain an extensive list of

citations.

Overview of sleep representations

Standard unprocessed source signals obtained by PSG include

electroencephalography (EEG), electromyography (EMG), and

electrooculography (EOG). A representation can be defined as a

transformation of these source signals. Sleep analysis originally

started with representations selected by people based on clinical

knowledge. Two well-known examples include spectral power

analysis of the EEG, and the assignment of standardized sleep

stages. However, in fact, any transformation of the original data can

be called a representation. The desired representation varies

depending on the intended objective of the analysis. Often, repre-

sentations have lost information compared to the original data:

lossy data compression has taken place. Compression is often

desirable, because sleep recordings typically yield large amounts of

data. Note that, besides temporal compression, also spatial

compression is induced, since signals from different areas of the

brain are compressed into one representation. In this review, we

focus on temporal sleep dynamics.

In the previous years, the data science community has made a

rapid shift from ‘conventional’ human-defined representations to

so-called data-driven representations learned by a machine. These

are also increasingly used in the sleep field [10]. In this review, we

describe representations based on their position on a spectrum

ranging from human-defined to machine-learned, and the method

that has been used to obtain them (Fig. 1). In each section, we

introduce a different type of representation and provide a few ex-

amples of its applications for clinical research. At the end of each

section, strengths and limitations of the representations are dis-

cussed. Additional methodological details are discussed in the

supplementary data.

We should note that it is also possible to acquire alternative

sleep measurements by recording physiological signals that change

as a result of sleep, for example actigraphy, electrocardiography

(ECG), respiration, and photoplethysmography (PPG) from the

wrist. These alternative source signals are often used for automated

surrogate sleep staging using wearables. Furthermore, occasionally

they are used to obtain other types of representations, for example

non-categorical representations based on heart rate variability

(section Non-categorical representations). We chose to not classify

the representations based on the source signal used, because often,

particularly for machine-learned representations, the selected

model is independent of the type of input signal. However, it is

important to keep in mind that the choice of the input signal does

influence the resulting representations.

Standardized sleep stages

Manual sleep staging

Manually scored sleep stages are based on the standardized

classification of the signals measured during PSG, specifically wave

form characteristics of EEG, EOG and EMG signals. Standard sleep

stages have a fixed length of 30 s, dating back to the time that PSG

recordings were printed on paper, based on the amount of signal

that would fit on one sheet [13]. The first classification manual,

which was published by Rechtschaffen and Kales (R&K) in 1968

[14], presents rules for the classification into either wake, REM or

Abbreviations

AASM American Academy of Sleep Medicine

AHI apnea-hypopnea index

CPC Cardio-pulmonary coupling

ECG Electrocardiography

EEG Electro-encephalography

EMG Electromyography

EOG Electro-oculography

GMM Gaussian mixture model

HRV Heart rate variability

ISO Infraslow oscillations

LDA Latent Dirichlet Allocation

NREM Non-rapid eye movement

REM Rapid eye movement

ORP Odds ratio product

PCA Principal component analysis

PPG Photoplethysmography

PSG Polysomnography

R&K Rechtschaffen and Kales

Spo2 Blood oxygen saturation level
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one out of four NREM sleep stages (S1e4), ranging from light to

deep. Later, updated versions were published by the American

Academy of Sleep Medicine (AASM) [15]. One of the major changes

was combining of the two stages of deepest NREM sleep, resulting

in three levels of NREM sleep (N1 - 3). Additionally, the stage

‘movement time’, which was previously used to exclude epochs

that could not be categorized, was abolished. Because of their

relatively low time resolution, human-defined sleep stages and

their inferred statistics are often said to capture ‘sleep macro-

structure’, as opposed to ‘microstructure’ that is described by rep-

resentations with time resolutions higher than 30 s.

Strengths and limitations

Sleep stages have been studied for many years, and they were

defined based on sleep characteristics that are important in clinical

practice, making them easy to interpret. Furthermore, they have

the important advantage of standardization, and of compatibility

with results achieved from sleep research in the past, as virtually all

reference and normative values are based on standard sleep stages.

On the other hand, manual sleep scoring is very labor intensive and

requires considerable training and experience (for automated sleep

scoring see chapter 7). Moreover, the average interrater agreement

of human scorers is approximately 82% [16], leading to potentially

large differences in interpretation of the sleep stages. Additionally,

sleep stages may be influenced by differences between R&K and

AASM scoring rules [17]. For example, according to AASM, a tran-

sition from N2 to N1 should be scored in the presence of an arousal,

while this is not the case according to R&K, leading to difference in

the scored percentages of NREM2 [17]. This difference is relevant

for older publicly available datasets that were still annotated with

R&K labels. Together these limitations of reliability of sleep stages

lead to the conclusion that manually scored sleep stages are a far

from perfect gold standard [18,19]. Apart from reliability issues,

both the temporal aspect (i.e., the need for sleep stages with a

length of exactly 30 s) and the categorical aspect (i.e., the need to

distinguish exactly five sleep/wake stages) may be questioned.

Statistics based on sleep stages

The representations described in this chapter are derived from

classical sleep stages assigned to 30s-epochs. The statistics can be

derived irrespective of the way the sleep stage labels were gener-

ated. The majority of the statistics are derived from manually

scored (section Standardized sleep stages) or automatically gener-

ated (section Automated sleep staging) epoch-based stages, and are

described here. In section Data-driven clusters, we describe over-

view statistics based on machine-learned clusters that can be seen

as alternative sleep stages.

Whole night overview statistics

Sleep stages are usually depicted in a hypnogram, showing the

progression of the sleep stages over time (Fig. 2). Additionally,

standard overview statistics can be calculated (Table 1). These

statistics, often referred to as ‘sleep architecture’, are typically

assessed in clinical care and have been used in many scientific

studies. They are very useful to obtain a quick overview of abnor-

malities in the whole-night sleep structure. The overview statistics

often result from maximal temporal compression; often, only one

number is provided to characterize a whole night of sleep.

Sleep transition dynamics

Analysis of sleep state transition dynamics considers the way

specific sleep stages or combinations of sleep stages alternate over

the night. Here we refer to sleep stages or combinations of sleep

stages as ‘states’. The traditional overview statistics listed in Table 1

mostly reflect quantities of sleep stages, while it can be also very

informative to assess their distribution over the night. For example,

a percentage of a certain sleep stage does not tell us whether that

particular sleep stage occurs in a few long uninterrupted trains or a

large number of short fragments [20].

Models describing sleep state transition dynamics usually

involve one out of two key questions: 1) how long does a certain

Fig. 1. An overview of approaches to represent temporal sleep dynamics. The blocks contain different types of representations, as well as some examples.
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sleep state typically last before transiting to another sleep state?

and 2) by what sleep state is it followed? For the first question

survival analyses may be used, the second question can be

answered using Markov models.

Survival analysis

Survival analysis concerns analyzing the expected duration of

time until one or more events happen. In sleep research one for

example examine the survival dynamics of the combined NREM

sleep stages within a sleep recording [21], i.e., the time it takes

before trains of NREM sleep epochs (also called bouts) are inter-

rupted by either wake or REM sleep (Fig. 3). This approach yields a

list of lifetimes of NREM bouts. A similar strategy could be followed

for wake, REM sleep, sleep in general, or specific NREM sleep stages.

Often, a distribution is fitted, so that the lifetimes of these bouts are

summarized with one or two parameters for each sleep recording.

For instance, in case the bout lifetimes can be modelled using an

exponential distribution, the average bout duration could be used

as a summarizing parameter (see S2.1).

Often, survival dynamics are compared between healthy

sleepers and patients [21e24], where decreased lifetimes of certain

sleep states can be interpreted as a decreased stability of that state.

For example, Norman et al. showed a decreased stability of sleep

(i.e., combined NREM and REM sleep) in people with sleep apnea

[20]. Our research group showed that people with insomnia had

less stable NREM sleep compared to healthy sleepers [24].

Markov models

Besides lifetimes, the transitions between specific states are also

of interest. Analysis of sleep stages often involves calculating the

number of transitions from one state to another per hour of sleep,

for example the number of transitions from N2 to N3 per hour

[25,26]. Alternatively, one can calculate probabilities of changing to

the different states, given the observation of a current sleep state

[27e32]. For example, the probability to progress to N3 could be

expressed if the current state is N2. Calculating such probabilities

for the AASM sleep stages yields a 5 � 5 table, called a transition

matrix (for analyses see S2.2). A chain of sleep stages over the night

is then essentially modelled using a first-order Markov chain: a

process that can be fully described by the probability of changing to

another state from a given state (Fig. 4). Higher-order Markov

chains can also be used to model sleep (see S2.2).

The transition matrix can be used to compare patient pop-

ulations. For instance, Ferri et al. showed that a lower probability of

REM to N2 transitions may be a distinguishing feature of people

with narcolepsy type 1 [31]. Additionally, Wei et al. showed that

people with insomnia had a larger probability of transiting fromN2

to wake or N1 compared to healthy controls, implying lower N2

stability [32].

Models incorporating external factors

It is also possible to utilize more complex models for a more

realistic interpretation of sleep. These models often involve

combinations of survival and transition dynamics [33e35]. Some

of these models additionally consider clock time and time asleep

factors [35,36], which could potentially be useful to assess ho-

meostatic and circadian abnormalities in people with sleep

disorders.

Yetton et al. constructed a Bayesian network to model the

probability of the current sleep stage given the type and duration

Fig. 2. Idealized example of a classical hypnogram, reflecting the progression of sleep stages over the night, based on 30-s epoch annotation.

Table 1

Often-used sleep description statistics according to AASM criteria.

Sleep statistic Unit Description

Total Sleep Time (TST) Time (minutes) Summed duration of all REM and NREM epochs in a sleep episode, from lights off to lights on.

Time in Bed (TIB) Time (minutes) Total amount of time that a person spends in bed, regardless of whether or not they are sleeping.

Sleep Efficiency (SE) Percentage Proportion of time in bed that is actually spent sleeping, calculated as TST/TIB x 100%.

Sleep Onset Latency (SOL) Time (minutes) Amount of time between bedtime or lights off time and the start of the first epoch of any sleep stage

Wake After Sleep Onset (WASO) Time (minutes) Summed duration of epochs scored as wake occurring after sleep onset.

# awakenings Number Total number of awakenings during the sleep recording. An awakening is defined as one or more

consecutive wake epochs.

REM sleep latency Time (minutes) Amount of time between sleep onset and the first epoch scored as REM sleep

N1; %N1 (also applicable

for N2, N3, and REM)

Percentage Total duration of sleep stages scored as N1; part of total sleep time (or time in bed) that consists of

N1, calculated as the summed duration of the epochs scored as N1/TST (or TIB).
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of the previous sleep stages; time of day; time asleep; and indi-

vidual characteristics such as age, sex and BMI [36]. Interestingly,

the authors concluded that information about time of day and

time slept did not add much predictive power to the model in case

the previous two sleep stages were used to predict the next one

[36]. The authors speculate that this could be caused by the fact

that specific patterns of sleep stages occur at different times of the

night [36].

Strengths and limitations

General overview statistics are very useful because a whole

night can be summarized by a few parameters. However,

important information, such as the degree of sleep fragmenta-

tion, is often lost. Modelling sleep transition dynamics yield

additional information about sleep fragmentation. Sleep transi-

tion dynamics represent a night based on another representation:

the sleep stages. Analysis of transition dynamics is potentially

very sensitive to subtle differences between the scoring of sleep

stages, because short events can have a large effect on the

outcome of the analysis. For example, an awakening with a length

of one epoch could result in counting two distinct sleep frag-

ments instead of one. This would in turn largely affect the average

length of the sleep bouts. In a study into transition dynamics of

people with narcolepsy, Zhang et al. indeed reported strong

interrater variability regarding the scoring of short awakenings

during the night [22]. When researching survival dynamics in

datasets annotated by multiple scorers, we would therefore

recommend specifically assessing inter-scorer reliability of sleep

state transition dynamics.

Microstructural events

Polysomnographically measured sleep is characterized by

recurring recognizable features in the EEG, such as k-complexes,

spindles, and arousals. Some of these events are seen as charac-

teristics of the different sleep stages, and are therefore part of the

AASM scoring rules. Furthermore, they can be used independently

to characterize sleep dynamics. Sleep spindles are sudden bursts of

oscillatory brain activity, which mostly occur during N2. K-com-

plexes are sharp large-amplitude waveforms that also occur during

N2. Sleep spindles and k-complexes both are believed to play a role

in memory consolidation, and in protecting the sleep from external

stimuli [37,38]. Arousals are sudden increases of the EEG frequency

[39], presumably reflecting short sleep disruptions. Because

microstructural events occur on a small timescale, they provide

information of high temporal resolution. For many microstructural

events, information is available about their origin in the brain.

Additionally, models are available about the underlying regulation

processes that could result in such oscillations [7], but this falls

outside the scope of this review. Microstructural events can be used

to calculate overview statistics, where they are often summarized

as number of events per hour. Similarly to overview statistics of

sleep stages (e.g., the number of awakenings per hour; see also

section Whole night overview statistics), temporal information is

then compressed to one characteristics for a full night of sleep.

Sleep spindles

For research into sleep disorders, sleep spindles are the most

studied micro-events.
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Fig. 3. Survival analysis of NREM sleep (fictional example). The lengths of all uninterrupted trains of consecutive NREM sleep epochs are empirically obtained from the hypnogram,

yielding a list of the lifetimes of all NREM bouts within the sleep recording. These lifetimes can be plotted as a function of the percentage of uninterrupted NREM sleep bouts of a

certain length L, based on counting the percentage of bouts with a length > L. These data points can then be used for further analysis, for example by fitting a distribution (green

line). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Examples of a first order Markovmodel for sleep. In this example, we show aMarkovmodel with three states: wake (W), REM sleep (R), and Non-REM sleep (N). On the right,

the transition matrix with 3 � 3 transitions is shown.
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Decreased numbers of sleep spindles and lower spindle fre-

quencies have been shown in patients with OSA [40,41]. Further-

more, lower spindle activity predicted larger increases in insomnia

symptoms in response to stress, and therefore possibly play a role

in the pathophysiology of insomnia [42]. However, consistent dif-

ferences of sleep spindle density have not been found between

people with insomnia and healthy sleepers [40]. Potentially,

studying other characteristics of sleep spindles (e.g., average length,

average frequency, etc.) could increase our understanding of sleep

disorders [40]. Medications that affect sleep, such as benzodiaze-

pines and benzodiazepine agonist, also affect spindles [43,44].

Because of the presumed involvement of microstructural events

in sleep regulation, their temporal organization is of particular in-

terest. An example of a temporal organization of microstructural

events is the cyclic alternating pattern (CAP).

Cyclic alternating patterns

Terzano et al. introduced CAP based on the observation that

microstructural events usually occur in bursts [45]. They divided

sleep into an A phase and a B phase. Phase A involves phasic events

that visually stand out from the background EEG, including delta

bursts, K-complex sequences, vertex sharp transients, polyphasic

bursts and arousals. Phase B represents tonic non-transient back-

ground activity. Phase A can in turn be subdivided into three sub-

types (see S3.1). Sleep is classified as CAP if an alternating A and B

phase can be observed, and as nonCAP in case only phase B is

present. The most extensively used statistic that can be calculated

from CAP is CAP rate, which is calculated as the percentage ratio of

total CAP time to total NREM sleep time (consisting of

CAP þ nonCAP). As all constituents of phase A can be seen as sleep

disturbances on the microstructural level, CAP rate is seen as a

measure of arousal instability, where higher CAP rates are associ-

ated with poorer sleep quality [46].

Altered CAP rates have been observed in a wide range of path-

ological sleep conditions, including sleep apnea, insomnia, and

periodic limb movements [46e48]. Moreover, sleep-related events

such as sleepwalking, bruxism and epileptic activity seem to have a

higher prevalence during phase A, while sleep apneas typically

occur during phase B [46].

Tonic and phasic REM sleep

The distinction between phasic and tonic sleep has also been

used for eye movements during REM sleep. During phasic REM

sleep, frequent eye movements occur [49]. During tonic REM sleep,

one can observe distinct low-voltage theta ‘background’ activity at

the EEG electrodes, and a decrease of EMG amplitude [49]. Tonic

REM sleep has a lower arousal threshold than phasic REM sleep

[49]. This distinction is potentially important for research into

abnormal sleep [49]. For example, violent behaviors during REM

sleep behavioral disorders more often occur during phasic REM

sleep, while epileptic events more often occur during tonic REM

sleep [49]. Studying the difference between tonic and phasic REM

sleep could help elucidating the underlying mechanisms of these

disorders.

Interdependency of oscillations and micro-events

There is emerging evidence that oscillations and micro-events

within the sleep EEG can influence each other. The sleep EEG

contains large-amplitude infraslow oscillations (ISO) with a fre-

quency of 0.02e0.2 Hz, which are not detectable in standard clinical

sleep recordings [50e52]. These ISO were shown to be strongly

synchronized with faster oscillations, i.e., the amplitude of the

faster oscillations depended on the phase of the ISO [52]. Addi-

tionally, the phase of the ISO modulated the occurrence of events

such as sleep spindles, k-complexes and interictal epileptic activity

[52,53]. It has been speculated that ISO have a sleep-regulating

function, and that perturbed slow oscillations may cause ill-timed

arousals in people with sleep disorders [51].

Strengths and limitations

Microstructural events usually have a high degree of standard-

ization and reveal information at high temporal resolution. Addi-

tionally, the fact that individual events have a presumed function

and origin in the brain makes them interpretable. Therefore,

microstructural events are often studied in fundamental research

into the function of sleep. Additionally, arousals and CAP A phases

can be seen as sleep disturbances with a higher resolution

compared to awakenings, and can therefore provide a more

detailed view on sleep fragmentation. Important disadvantages of

microstructural events are the fact that this information can only be

obtained from standard PSG measurements and the need for

manual scoring, which is laborious and time-consuming. Auto-

mated scoring algorithms have been developed for various micro-

events, such as sleep spindles and CAP [54e56]. However, these

algorithms are not as widely used as automated sleep staging al-

gorithms, due to the difficulty of exactly mimicking manually

scored events. For example, there are still important differences

between manually and automatically scored sleep spindles [57].

Automated scoring algorithms for phasic and tonic REM sleep have

the additional problem that there is no real gold standard, due to

the lack of a clear and uniform definition (i.e., definitions of REMs

vary acrossmanual scorers [58], and the distinction between phasic

and tonic REM epochs have beenmade in various ways). This lack of

gold standard also limits the comparability between manually

scored studies.

Non-categorical representations

Non-categorical representations, in contrary to earlier discussed

representations, do not categorize sleep epochs into discrete cate-

gories like sleep stages, or presence or absence of micro-events. On

the contrary, a finer quantized scale is used to represent a trans-

formation of the source signals. A spectral representation of an EEG

is a common example. Because non-categorical representations do

not rely on the assignment of categories (which induces informa-

tion loss), they can reflect small differences between sleep re-

cordings that are not noted upon comparing traditional sleep

stages. Furthermore, they can provide a more gradual impression of

changes throughout the night, compared to the abrupt changes that

are inherent to sleep stages.

Non-categorical representations are mostly based on trans-

formations of the EEG signal. Alternatively, metrics based on heart

rate variability (HRV) have been employed.

EEG-based representations

Spectral power analysis

Spectral power analysis of the EEG is a widely used strategy

[59,60]. The spectral content of an EEG signal can be divided into

standard frequency bands [59] (Table 2). Usually, spectral power

amplitude calculations are based on 30s-epochs, similar to the AASM

sleep stages. The average spectral power during the night or during a

specific sleep stage can then be compared between groups of people.

Sometimes, changes over consecutive sleep cycles are analyzed. As

an alternative for dividing spectral power into frequency bands, it is

also possible to directly model and analyze the slope of the
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amplitude/frequency content [61,62]. If modelled correctly, this

approach can potentially provide the advantage of using less pa-

rameters to describe the same behavior, thus avoiding type I errors

[62]. Another widely used approach is analyzing non-linear dy-

namics of the EEG, often involving calculating either fractal di-

mensions or entropy from the EEG (see S4.1). However, these types

of representations are not often used in research into sleep disorders.

Changes from wake via light sleep to deep NREM sleep are

accompanied by a gradual slowing of spectral power. Different

frequency bands have distinct physiological interpretations, e.g.,

lower frequency bands seem to be associated with a lower chance

of waking up from external stimuli [63] and higher frequency bands

seem to reflect more wake-like brain activity [60]. People with

insomnia often present more high-frequency EEG power during

NREM sleep compared to healthy sleepers, a finding that is often

interpreted as a sign of hyperarousal and alertness [64,65].

Representations of sleep depth: odds ratio product and bispectral

index

Spectral power has also been used to express sleep depth [63].

Younes et al. introduced the odds ratio product (ORP), a measure

based on ‘arousability’, i.e., the chance of waking up from a certain

sleep stage [66]. This measure was based on a representation of the

spectral amplitudes of 3-s time windows within four frequency

bands (see S4.2). The amplitudes within the frequency bands were

assigned a rank between 0 and 9, and combining these four

numbers resulted in numbers between 0000 and 9999, which all

were assigned to a different odds ratios. Another index of sleep

depth is the bispectral index (BIS), which is an empirically derived

parameter based on a combination of EEG parameters from the

time and frequency domain [67]. BIS is only available in commercial

software.

Younes et al. assessed the ORP during the first 9 s after arousals

in people with obstructive sleep apnea [68]. In some patients the

ORP normalized faster than in others, which could be an explana-

tion for the fact that people with the same apnea-hypopnea index

(AHI) can experience very large variations in the severity of their

complaints [68].

State space analysis

Schoch et al. divided polysomnographic recordings into 5-s

epochs and plotted each epoch in two-dimensional space based

on two fixed frequency ratios calculated from the EEG signal [69].

Colors were assigned to epochs based on manually assigned AASM

sleep labels. Epochs assigned to certain sleep stages naturally form

clusters, as AASM scoring rules are partially based on EEG spectral

power. This visualization was used to ‘track’ the trajectories be-

tween the 5-s epochs over the night, which can be visualized by

plotting lines between subsequent epochs. The authors refer to this

approach as ‘state space analysis’.

It was found that the clusters of datapoints labelled as REM and

wake were more merged for people with narcolepsy compared to

healthy sleepers, indicating that REM and wake had more similar

spectral characteristics. Furthermore, patients with narcolepsy

showed an increased number of transitions between datapoints

labelled as wake and sleep [69]. Such two-dimensional state space

analyses could also be based on other features than spectral power,

and potentially provide interesting insights.

Heart rate variability and cardiopulmonary coupling

In the previous paragraphs, we discussed representations based

on EEG. However, non-categorical representations can also be

based on alternative source signals, for example heart rate. Heart

rate variability (HRV) considers the physiological variability of the

length of the interval between heart beats over time [70]. There are

multiple indices that can reflect heart rate variability (HRV). Most

commonly used methods express HRV in either the time domain

(for example by calculating the root mean square of the successive

differences between heart rates) or the frequency domain (for

example using spectral power analysis). It has been speculated that

high frequency (0.15e0.4 Hz) HRV is modulated by the para-

sympathetic system, while low frequency (0.04e0.15 Hz) compo-

nents of HRV are modulated by both the parasympathetic and the

sympathetic system [71]. That way, analyzing different frequency

bands could provide additional information about the regulation of

sleep by the central nervous system. HRV changes over the

consecutive sleep stages, providing the basis for automated sleep

staging based on cardiac signals (see also chapter 7) [12]. A related

family of metrics is cardiopulmonary coupling (CPC), which is a

measure of the coupling between cardiac and respiratory systems

[72]. This metric was introduced as a way to evaluate autonomic

sleep regulation in people with reduced heart-rate variability [72].

CPC can be calculated based on two time series derived from the

ECG: fluctuations of heart rate over time, and a surrogate respira-

tion signal, obtained from respiration-induced fluctuations of the

ECG [72]. CPC is then the product of the coherence and cross-

spectral power of these two signals [72].

Evaluation of HRV and CPC has been used for research in people

with OSA, who consistently show alterations of autonomic nervous

activity, although the exact underlying mechanisms are not known

[73]. Similar processes possibly also play a role in other sleep dis-

orders, such as insomnia and periodic limb movements [74]. Fluc-

tuations of HRV and CPC seem to co-occur with CAP, indicating that

CPC and HRV changes could reflect sleep instability [75,76].

Strengths and limitations

Non-categorical representations can provide high-resolution

information. However, calculating overview statistics based on

non-categorical representations is a bit more difficult. Therefore,

we often see that they are combined with sleep stage information

and analyzed based on 30s-epochs. Non-categorical continuous

representations have the advantage of not requiring manual

scoring. However, most of them have the limitation of being based

on exclusively the EEG signal. Analyzing signals obtained from

Table 2

Spectral power bands often used in sleep analysis.

Frequency band Frequency (Hz) Description

Delta ~ 0.5e4 The slowest of the classically described brain waves, with a high amplitude. Epochs with more than 20% delta waves,

with a minimum amplitude of 75 mV, are classified as N3.

Theta ~4e8 Theta activity is mostly found during N1 and N2. They reflect the gradual slowing of EEG waves that can be observed

when someone is falling asleep.

Alpha ~8e15 Alpha activity can be seen in someone who is relaxed and awake. They are apparent when the eyes are closed.

Sigma ~12e16 Frequency range in which sleep spindles can be seen. Sleep spindles are mainly found during N2.

Beta ~16e31 Beta activity is associated with normal waking consciousness. They also occur during REM sleep, of which the EEG signal

is similar to wake activity.
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wearable sleep measurements, for example based on HRV, may

provide a more scalable alternative.

Automated sleep staging

Supervised machine learning

Although standardized sleep staging rules were initially inten-

ded for manual classification, nowadays a plethora of automated

sleep staging algorithms are available. These algorithms are all

forms of supervised learning, because they are trained to reproduce

ground-truth labels. Throughout the years, many different algo-

rithms have been developed (for reviews see: [18,77]). Recently

deep learning techniques have become popular to automatize

complex tasks, because they can achieve high performance in the

presence of large amounts of data. These algorithms also have been

successful for sleep staging. Algorithms that are able to model time

relations, for example when incorporating long-short-term mem-

ory (LSTM) cells, have been particularly successful, probably

because sleep staging for a specific epoch is strongly related to the

surrounding epochs. Deep learning models are often trained on

untransformed data [18]. However, manual feature selection based

on AASM guidelines in combination with deep learning networks

have been employed as well to improve interpretability, for

example by the commercially available Somnolyzer algorithm.

Automated sleep staging algorithms based on standard PSG re-

cordings achieve accuracies of 70e80%, which is a very good per-

formance if one keeps in mind that the inter-scorer agreement of

human scorers is approximately 80%.

Furthermore, there is an increased availability of automated

sleep staging algorithms based on alternative sleep measurements

using wearables (for a review, see: [78]). Older surrogate mea-

surements such as actigraphy allow for distinguishing between

sleep and wake, based on the assumption that movement indicates

wake and stillness indicates sleep. Although actigraphy in general

provides good results, it is important to keep in mind that it has a

low specificity for sleep, i.e., non-moving wakefulness can be

misinterpreted as sleep [79]. Methods based on autonomic activity,

for example HRV, rely on the expression of sleep stages on auto-

nomic nervous system activity. Such algorithms already allow for

the distinction of wake and three different sleep stages (REM, N1-2

and N3) [12]. Accuracies of 59e76% have been reported for such

algorithms [12].

Sleep staging using reduced epoch lengths

Automatic scoring algorithms can also be used to obtain sleep

stage assignments for shorter epochs, e.g., with a length of a few

seconds [80,81]. Perslev et al. predicted sleep stages with even

shorter epoch lengths up to a frequency of 7680 epochs/minute [82].

The authors built a random forest model to distinguish patients with

sleep apnea from healthy controls, based on the occurrence of triplet

transitions between sleep stages (i.e., the frequency of combinations

of three consecutive unique sleep stages, for example N3, N1, N2),

obtained from scoring algorithms with different sleep stage lengths.

The performance of the classifier was better for short sleep stages

than for longer sleep stages, indicating that the high-resolution sleep

stages seemed to provide additional relevant information about

pathological sleep characteristics.

Strengths and limitations

Automated sleep staging saves a lot of effort and time compared

to manual scoring. Furthermore, because automated sleep staging is

deterministic, the same input signals will always result in the same

scoring. Automatically scored sleep stages are more flexible

compared to manually scored sleep stages, because they can be

inferred from other measurements than standard polysomnography,

yet they still have the same standardization and interpretation ad-

vantages as gold standard sleep stages. However, exactly mimicking

manually scored sleep stages is not a straightforward task. Large

datasets are required to obtain algorithms with a good performance.

Also, it is important to combine datasets from patients and healthy

people and from different sleep hospitals and scorers, to avoid

overfitting. Existing algorithms were often trained on cohorts with

narrow characteristics, for example including only a limited number

of sleep disorders. This, together with the black-box nature of these

algorithms, may reduce the willingness of clinicians to fully embrace

automated sleep staging [9].

Shorter sleep stages can offer an additional increase of resolu-

tion. However, the validity of these sleep stages is difficult to

evaluate, due to a lack of a gold standard. We will see that this

disadvantage is also applicable for other data-driven representa-

tions discussed in the next sections.

Data-driven clusters

Data-driven clusters are an alternative for classical rule-based

sleep staging, and are typically obtained by unsupervised learning

algorithms. Unsupervised learning aims to reveal intricate patterns

or clusters in the data in a purely data-driven fashion (as opposed to

supervised learning, see section Automated sleep staging, which

leverages sleep stage annotations). Resulting clusters could thus be

interpreted as alternative sleep stages, and potentially reflect pat-

terns that have not been observed by humans.

Unsupervised clustering

Several strategies have been reported to obtain data-driven

clusters from PSG recordings [81,83e85]. These strategies can

be summarized as follows. The source signals are first divided

into epochs (which are typically 30 s or shorter), after which one

or multiple features are extracted from each epoch. Features

used for generating data-driven sleep clusters in the literature

include e among others - complexity of the EEG signal [83,85],

spectral power of the EEG signal [81,84], and cross-correlation

between the left and right EOG channels [81], but any type of

feature derived from sleep measurements could be used as input

for most clustering algorithms. An extensive overview of com-

mon features derived from EEG signals is provided by Motamedi-

Fakhr et al. [8]. Lastly, some form of clustering is applied on the

derived features. Clustering algorithms group data based on (dis)

similarities between datapoints. Clustering techniques can in

general be subdivided into methods that a priori set the number

of clusters and assign data points to each of these clusters [84],

and strategies that have to decide upon a stopping criterium for a

hierarchical method that iteratively merges or splits clusters.

This stopping criterium is often defined as the point where a

fixed number of clusters is reached [83,85], but it could also be

defined using an information-driven criterium [86], such as AIC

or BIC.

As a means of validation, found clusters are often compared to

standard AASM sleep stages. Frilot et al. found four data-driven

sleep clusters [85]. When comparing these clusters to AASM sleep

stages, they found that the AASM-defined wake and REM stages

were heterogeneous: each corresponded to multiple data-driven

clusters [85]. Comparing different types of wake-related clusters

also revealed a difference between wake before and after sleep on

the one hand, and WASO on the other hand [85].
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Clustering based on fMRI data

Data-driven clusters can be derived from any type of signal,

including alternative source signals. For example, Stevner et al.

used an unsupervised algorithm to identified clusters based on

fMRI data [6]. The authors compared the obtained clusters with

AASM stages of a simultaneously recorded PSG signal, and analyzed

inferred transition dynamics (see also section Strengths and limi-

tations. For an introduction of transition dynamics).

The authors show that N1 did not correspond to any of the

data-driven sleep stages [6]. The transition map did, however,

indicate the existence of a different transitional state between

wake and sleep. Additionally, similar to conclusions by Frilot et al.

[85], results indicated that WASO and wake before sleep onset or

after last awakening may be two different states with different

brain activity and different transition dynamics [6]. This finding

may explain sleep inertia, i.e., the sleepiness and impaired

cognitive performance immediately after awakening [6]. The

presence of different types of brain activity during wakefulness

may also provide an explanation for the fact that people with

insomnia seem to experience awakenings differently than healthy

sleepers.

Strengths and limitations

Alternative sleep stages can be used to recognize complex pat-

terns in the data, that are sometimes difficult to find for human

observers. Unsupervised machine learning has the additional

advantage that no manually scored labels are required to train the

algorithm, which is potentially beneficial in large datasets, and in

sleep measurements obtained by wearables.

In general, methods based on machine learning can be based on

any type of signal. However, an inherent difficulty with unsuper-

vised machine learning is the lack of a reference truth, making it

hard to evaluate the performance of the algorithm and the chosen

features. However, there are ways to assess the quality of the

distinction between the found clusters, for example quantification

of sleep stage class separability in high-dimensional spaces [87].

Another difficulty is that data-driven clusters are not standardized,

and different clusters can be found depending on the input data,

features, and clustering algorithm. Furthermore, interpretation can

be challenging. From the presented examples of the work of Frilot

et al. and Stevner et al., it can be seen that comparing data driven

clusters to AASM stages aids interpretability.

Probabilistic mixture models

Following standard human-defined sleep scoring rules,

exactly one sleep stage is assigned to each 30 s of data. The same

holds true for data-driven (discrete) clusters, which were dis-

cussed in Section Data-driven clusters. In contrast, probabilistic

mixture models represent sleep as a continuous mixture of

several clusters over time (see Fig. 5 for an example). Probabi-

listic mixture models possibly present additional information,

because multiple clusters can be assigned simultaneously, and

because the probability of a sleep stage is now represented in a

non-categorical way. Like the continuous representations

described in section Non-categorical representations, this allows

for reflecting gradual changes.

We can distinguish models that predict probabilities of data-

driven clusters and models that predict probabilities of the AASM

stages. In sleep literature, probabilities of data-driven clusters are

often modelled using Gaussian mixture models (GMM) and/or topic

models.

Gaussian mixture models

A GMM is a probabilistic model that assumes that the data can

be represented as a mixture of K Gaussian distributions, where K e

which may be considered the number of clusters - should be cho-

sen in advance (Fig. 5). While any data representation can in theory

be used to fit a GMM, often features are used. For each set of fea-

tures within one epoch, the GMM yields a probability that it be-

longs to each of the K clusters.

Flexer et al. were the first to model human sleep as a mixture of

different probabilities of wakefulness, deep sleep and rem sleep

[80,88]. They used a combination between a GMM and a hidden

Markov model to reflect time relations between sleep stages

[80,88]. Cesari et al. aimed to predict healthy aging from sleep data

using a GMM (K¼ 3) [89]. The resulting clusters were interpreted as

typical wake, deep sleep, and light sleep, and it was shown that

aging is better captured in the statistics of the GMM, than in sta-

tistics of traditional automatic sleep scoring classifiers [89]. Mainly

the predicted deep sleep probability resulted to be an indicator for

aging. Lewandowski et al. trained a GMM (K ¼ 20) on the param-

eters of an auto-regressive model [90]. Interestingly, the authors

did not only maximize the GMM fit, but also the fit with R&K labels,

and some spindle labels defining the amount of presence of spindle

activity. By taking into account these labels, the authors aimed to

find micro-states/clusters that correlate well with one of the R&K

sleep stages [90]. As a result, multiple micro-states together could

encompass exactly one R&K stage, making the definition of R&K

stages more fine-grained. Certain combinations of micro-states

were found to correlate better with sleep quality metrics than the

time spent in R&K stages [90].

Topic models

Topic models originate from the field of natural language pro-

cessing, where different text documents span different (and

possibly multiple) topics. Each word in a language is assigned to

each of the topics with a certain probability, thereby creating topics

that are a probabilistic representation of the underlying words (see

S5.1 for a comparison between GMMs and topic models).

Esbroeck et al. translated the use of topic models, specifically

Latent Dirichlet Allocation (LDA), to sleep data [91] (Fig. 6), where

quantized frequency band information was used to form ‘words’. A

resulting topic mixture diagram reveals the probability of each of the

learned topics/clusters at each epoch. The model was trained for

Fig. 5. Gaussian Mixture Model (GMM). Here, we show an illustrative GMMwith K ¼ 3

Gaussian distributions (i.e., clusters), trained on two features. Usually, these models are

trained based on features that are extracted from the data. For each set of features

within one epoch, the GMM yields a probability that this point belongs to each of the K

clusters.
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each patient separately, resulting in patient-specific topics. Patient-

specific sleep stages (a possibility that is not restricted to topic

models only) are probably well-suited to model individuals with

altered physiology, but they are also difficult to compare across

individuals. Models fit on a representative sample from the popu-

lation, yielding the same sleep stages for each participant, are more

suitable for generalization and comparison. Koch et al. trained LDA

models on a group of healthy participants [92]. The authors showed

that the six obtained latent sleep stages could be used to distin-

guish patients with REM sleep behavior disorder and Parkinson's

disease from controls [92].

Probabilities of AASM sleep stages - hypnodensity

Stephansen et al. predicted probabilistic mixtures of AASM

stages, by training a neural network to predict annotated AASM

labels [93]. Such a prediction entails a probability for each of the

classes. For the task of automated sleep staging, the sleep stage

with the highest probability is normally selected and compared to

the ground truth label. The authors propose to directly analyze

these probabilities of the AASM stages, and referred to the resulting

visualization as a hypnodensity plot [93]. An example of a hyp-

nodensity plot is shown in Fig. 7.

Based on the sleep stage probabilities, the authors manually

generated features reflecting mixing/dissociation of sleep stages,

and features expected to predict narcolepsy based on prior work.

These features were fed to a classifier, with the goal to develop

biomarkers to distinguish narcolepsy from healthy controls. A

high sensitivity and specificity of 93 and 91% were found in a test

dataset. The most discriminating feature was an early occurrence

of a mixture between wake, N2 and REM, reflecting the known

sleep stage dissociation in people with narcolepsy [93]. Krauss

et al. proposed to use the auto- and cross-correlations of the sleep

stage probabilities in the hypnodensity plot as measures for

Extract features

Topics

Relate

T1

T2

T3

Features of this epoch Topics of this epoch

Fig. 6. Topic model. A topic model is based on features that are extracted from the data. In this example, three features are extracted from an epoch (which can be thought of as

‘words’ in a conventional topic model). We also have three topics. Each topic has a distribution over the features associated with it. By relating the extracted features to each topic,

we can find a second distribution: how much of each topic is present in this epoch. The probability over the topics can then be plotted over the night similar to Fig. 7.

Fig. 7. Example of a hypnodensity plot, showing probabilities of sleep stages over time. Combinations of probabilities of sleep stages can be present at the same time. For example,

between 3 and 5 h, multiple instances of combinations of N2 and N3 probabilities are visible (see also magnification below).
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identifying pathological disturbances in patients’ sleep cycle

length [94].

Strengths and limitations

Probabilistic mixture models have similar advantages and dis-

advantages compared to the learned sleep stages described in sec-

tion Data-driven clusters, with the possible additional advantage of

added information due to the probabilities of the sleep stages. Over

time, the focus of machine learning for clustering in general has

shifted from simpler models such as GMMs to deep learning models,

which are more flexible and do not assume a Gaussian distribution.

For sleep-specific applications, the more recently developed hyp-

nodensity approach provides interpretability advantages compared

to GMMs and topicmodels, because hypnodensity algorithm outputs

probabilities that can be directly linked to AASM sleep stages, and

have been proven clinically useful for the diagnosis of narcolepsy

[94]. Regardless of the method that was used to obtain the proba-

bilities, the exact way they probabilities should be interpreted, re-

mains an open question. Stephansen et al. noticed that their

probabilities corresponded to uncertainty between different scorers

[93]. It is not known if spread probabilities could also reflect mixture,

i.e., the presence of different sleep stages at the same time.

Learned non-categorical representations

In the previous sections we discussed supervised machine

learning to obtain AASM sleep stages (section Automated sleep

staging) and unsupervised machine learning to obtain data-driven

clusters, that can be seen as alternative sleep stages (section Data-

driven clusters). The goal of both of these methods is to make a

prediction about the input data (i.e., a class or a cluster).

However, machine learning is not only restricted to supervised

learning and unsupervised data-driven clustering. There is also a

growing line of research to representation learning models, that

aim to find a lower-dimensional data representation. Such models

could be understood as more advanced (i.e., data-driven and non-

linear) variants of principle component analysis (PCA). A lower-

dimensional representation of such a model is typically the

output of a sub-model (or layer), which are stacked after each other.

Recently, learned representations have gained popularity in many

different research fields, including for example medical imaging

processing [95].

Learned lower-dimensional representations might also provide

clinically relevant insights in the structure of sleep recordings. The

extent to which these representations contain useful information

depends on the type of model, the training strategy, and the data

used to train the model.

We will discuss two types of representation learning models that

have been investigated for sleep recordings; unsupervised auto-

encoder models (Fig. 8, left), and models that rely on self-

supervised learning (Fig. 8, right); a subset of unsupervised learning.

Auto-encoders

Autoencoders aim to reconstruct input data as good as

possible, given a bottleneck in the middle of the stack of layers.

The bottleneck is necessary to ensure that the model learns a

meaningful compressed representation, which is often referred

to as the latent space or embedding. A shallow and linear

autoencoder has been shown to reveal the principle components

of PCA in its latent space. In practice, however, the first few

principle components are often not descriptive enough due to

high complexity of the data. Over the years, autoencoders have

therefore become more complex (including more layers, non-

linearities, and convolutional operations to exploit spatial or

temporal relations in the data) in an attempt to find better

lower-dimensional representations.

Such low(er)-dimensional data representations have in sleep

research typically been used as input to any type of classifier. Feng

et al. for example show that sleep apnea can be detected by training

a classifier on the latent space features of a specific type of

autoencoder [96]. However, interpretability of such features re-

mains a challenge due to the lack of direct relations to known

features. Al-Hussaini et al. aim to slightly bridge this gap, by

relating learned features to scorer-defined characteristics via a

similarity metric, in order to train interpretable classifiers, such as

decision trees, for automatic sleep staging [97].

Fig. 8. Left: Auto-encoder: An autoencoder aims to reconstruct the input data as good as possible, given a bottleneck in the middle of the stack of layers. This bottleneck is necessary

to ensure that the models learn a meaningful compressed representation. The representation at the bottleneck of the ideally reveals the underlying latent factors of variation that

are present in the data. Right: Self-supervised learning: Self-supervised models leverage structures in the data (here: time relations) to find a representation of the data. In this

example, the time relation between windows is used to learn this representation.
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Self-supervised learning

The training objective of an autoencoder is not guaranteed to

result in the most optimal embedding for a required task, which

lead to the invention of alternative self-supervised training stra-

tegies. Models that are trained in a self-supervised fashion aim to

perform a task that relies on structures in the data, for example,

temporal relations (Fig. 8, right). Even though self-supervised

models are neither guaranteed to find optimal embeddings,

thanks to the conceptually different way of training, both models

might result in distinct representations, serving different goals.

Banville et al. leverage three different self-supervised tasks and

an auto-encoder to learn hidden representations of EEG signals

[98]. The authors compared the performance of sleep stage classi-

fication using the resulting embeddings, based on the idea that

good performance on this task can be used as an indicator that a

learned representation still contains useful information [98]. The

classification performance on auto-encoder embeddings was much

lower than the performance on the self-supervised features, indi-

cating that the self-supervised models preserved more relevant

sleep structure-related information. We note, however, that the

tested autoencoder had a simple architecture, while more complex

architectures have been available. It also remains to be investigated

how the choice for a specific self-supervised task influences the

learned representations. Banville et al. reduced the dimensionality

of the embeddings from two of the three self-supervised models

even more by using a common visualization technique, to finally

get a 2D representation that is suitable for visual analyses [98].

Transitions between AASM stages were found to be smooth in this

2D space, suggesting no hard class boundaries between these

stages. Moreover, sleep apnea patients were found to cluster

together in these 2D visualizations, as well as age groups.

Strengths and limitations

Like unsupervised data-driven clusters, representation learning

methods have the advantage that no manually labeled data is

needed. Even if labels would be available, they are usually not used

to obtain learned continuous representations, because it is hy-

pothesized that hidden representations not based on labels can

serve as a more general representation of sleep than representa-

tions that are (possibly only) optimal for the task of sleep staging.

The field of learned continuous representations is rather young,

and still in full development. It remains to be investigated whether

recent developments in the aforementioned models may be suit-

able to learn more representations of sleep recordings that truly

reveal new clinical insights. Thanks to their flexibility (i.e., being

unsupervised and fully data-driven), they could be of potential use

to represent and compress relevant information from multiple-

night recordings in large and/or heterogenous datasets. Similarly

as for the learned clusters and mixtures sleep clusters described in

sections Automated sleep staging and Data-driven clusters, it re-

mains an open research question how to best evaluate the quality of

a learned representation. Furthermore, a future challengewould be

to relate these representations to interpretable clinical features.

Discussion

Although PSG measurements have been used for a long time to

study sleep, understanding the exact mechanisms underlying

pathological sleep remains challenging. In spite of reliability issues,

epoch-based assignment of sleep stages and derived statistics

remain the gold standard for describing sleep, especially in the

clinical setting. Although these conventional metrics have the ad-

vantages of standardization, interpretability and compatibility with

previous research results, they possibly do not reflect all relevant

changes of sleep characteristics over the course of the night. This

has led researchers to explore a plethora of alternative represen-

tations of temporal sleep dynamics. These different representations

each have their own advantages and disadvantages, and their val-

idity depends on the goal of the analysis. One of those advantages is

that new representations often offer a higher temporal resolution.

Furthermore, they may reflect a different number of stages if

needed, and/or offer non-categorical information. Additionally,

recently developed machine-learned representations bring the

benefit of faster, automated sleep staging, and allow for analyzing

large datasets obtained from various measurement modalities, for

example multi-night recordings obtained using wearables. Lastly,

these methods can also be used to find new patterns from the data

that are possibly too complex to be identified by human observers.

The rise of new representations for clinical research is accom-

panied with three major challenges: 1) validation, 2) clinical rele-

vance and 3) interpretability. First, using new representations for

clinical research requires validation to make sure that a represen-

tation embodies what we want it to represent. The most straight-

forward way to validate is comparing to a gold standard. Manually

scored sleep stages function as a gold standard for automated sleep

stages, but still, it is sometimes difficult to evaluate performance in

a good way. Standard metrics to evaluate performance, such as

accuracy and class-balanced accuracy, reflect the general agree-

ment over a full night of sleep, but do not provide information

about specific derived features that may be important (for example

sleep fragmentation). Sleep stages are also an imperfect and

ambiguous gold standard, due to variability between and within

human scorers. Therefore, no 100% accuracy can be obtained. If we

are looking for alternative representations that offer additional

information that is not yet available, validation inherently becomes

more difficult, because of the lack of a gold standard. In these cases,

new representations should ideally be selected based on clinical

relevance and interpretability.

Evaluating clinical relevance is important because sleep mea-

surements provide a very rich data source, and the number of rep-

resentations that can be inferred is near endless. Not all of those are

clinically relevant. Since researchers are often looking for represen-

tations that can help to understand sleep disorders, the relevance of

new representations is often demonstrated by showing differences

between healthy sleepers and people with a sleep disorder

[22,27,47]. Here, artificial intelligence could play an important role in

feature selection, for example to identify which parameters distin-

guish best between healthy and sleep disorders. We should note that

judging clinical relevance based on the presence of significant dif-

ferences between groups has a risk of being circular, i.e., assuming

that there should be a difference between groups could lead to the

conclusion that the representation is clinically relevant, even if there

was no actual clinically relevant difference. This should be taken into

account. Another, possibly complementary, strategy could be corre-

lating the representations to the perception of the sleeper, for

example to find out which sleep characteristics influence someone's

perceived sleep quality [99,100], or to study daytime sleepiness in

relation to sleep transition dynamics [101]. This type of research has

mainly been performed for overview statistics based on sleep stages,

but not for many alternative representations.

The previously described strategies to obtain clinical relevance

also aid interpretability. Interpretability could be further improved

by combining different types of representations with known char-

acteristics. For example, we often see that data-driven sleep stages

are compared to AASM sleep stages to identify which extra infor-

mation is provided by the machine [6,85,90]. Additionally, inter-

pretability can be improved by providing reference values. Sleep

representations typically show large variation with age and gender,
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and possibly also between nights. Data from normal sleepers with

different characteristics, as well as people with sleep disorders, is

required to find reference values. Multiple night recordings using

wearable sensors can help to learn more about normal night-to-

night variation. However, it is important to keep in mind that the

type of source signal may influence the resulting representation.

Understanding night-to-night variability is not only a prereq-

uisite to interpret and understand sleep representations; it also

potentially contains clinically relevant information. Further

research is needed to find suitable representations reflecting clin-

ically relevant multiple-night information. One other important

target for future research is the development of representations

reflecting information about the time of the night. Sleep parame-

ters inevitably involve data compression over time. For example,

the average NREM sleep bout duration provides information about

sleep fragmentation, but it does not answer the question whether

this fragmentation changes over the course of the night. Such in-

formation could reflect circadian and homeostatic processes, which

are possibly altered in people with sleep disorders. One useful

approach could be the construction of models incorporating time of

the night or time asleep as a parameter [36].

In summary, there are many different ways to represent time

dynamics of sleep. These representations can be complementary

used to describe different aspects of pathological sleep. Because of

the large number of possible representations, future research should

focus on finding a balance between developing sophisticated sleep

analysis techniques and maintaining clinical interpretability. To find

clinically meaningful representations, a strong collaboration be-

tween clinical and technological research is needed.
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