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Alzheimer’s disease (AD) is a current and growing public health 

crisis with the worldwide prevalence of AD expected to rise 

from 46.8 million individuals affected in 2015 to 131.5 million 

in 2050 [1]. Differentiating AD from other neurodegenerative 

diseases is frequently difficult on clinical grounds, especially in 

the earliest stages of disease, and neuroimaging and biochem-

ical markers of AD pathology are often used to supplement the 

clinical diagnosis. However, the development of these markers 

was initially impeded by the heterogeneous methods used by 

investigators. To address this heterogeneity of data collec-

tion, the AD field undertook multiple steps to ensure that uni-

form and standardized data were collected by investigators. 

A Minimum Data Set for Alzheimer Disease Centers (ADC) was 

developed by the Executive Committee of the ADC Directors to 

characterize individuals with mild AD and mild cognitive im-

pairment (MCI) in comparison with the cognitively unimpaired 

elderly [2]. A  multicenter Alzheimer’s disease research project 

called the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

was launched with the goal of optimizing methods and uniform 

standards for the acquisition of neuroimaging data [3]. Both of 

these initiatives and others were driven by the need to improve 

the accuracy of clinical diagnosis of AD and differentiate AD 

from other neurodegenerative diseases.

Increasing evidence supports a bi-directional relationship be-

tween sleep and AD [4]. Sleep may potentially serve as a marker 

for AD progression and/or as an intervention to prevent/delay 

AD onset. A major focus of current research is determining how 

sleep changes at different stages of AD and a similar problem 

of heterogeneous methods now faces the sleep research com-

munity. Studies investigating the relationship between sleep 

and AD (and other neurodegenerative diseases) have used 

self-reported sleep measures [5], actigraphy [6], electroenceph-

alography (EEG) [7], and polysomnography (PSG) [8]. Blackman 

et al. [9] address this issue by determining how sleep has been 

measured in studies of individuals with early AD and non-AD 

dementia, what parameters were reported, the extent of hetero-

geneity that prevents pooling and comparison across studies, 

and finally suggests guidelines to standardize collection of sleep 

measures.

A majority of studies in patients with MCI and early dementia 

relied on validated questionnaires for self-reported sleep meas-

ures with fewer studies using more objective methods such as 

actigraphy or PSG. Each of these methods have strengths and 

weakness, and the authors recommend the collection of both 

objective and subjective sleep measures. Multiple methods of 

measuring sleep in the same participants will provide more 

comprehensive sleep phenotyping as well as increase the ability 

to compare sleep outcomes to previous studies that used only 

one method, such as self-reported sleep logs or validated ques-

tionnaires. Further work standardizing the collection of ob-

jective data, such as actigraph characteristics, also needs further 

discussion.

The field of wearable and non-wearable technologies to 

measure sleep is rapidly advancing. Home-based EEG monitoring 

may be administered over multiple nights and future studies 

are likely to increasingly rely less on in-lab polysomnography. 

Monitoring sleep in the home environment is more naturalistic 

and will facilitate more cost-effective longitudinal measure-

ments. Also, patients and caregivers are asking for comfortable 

and convenient monitoring devices [10]. The array of devices po-

tentially available for research includes limited scalp electrodes, 

electrocardiography patches on the chest, wrist-worn sensors 
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(e.g., temperature, accelerometry, photoplethysmography, and 

electrodermal activity), oximeters, mattress sensors, and motion 

detection sensors placed in rooms [11]. Any future guidelines 

will first have to keep these in mind as they establish min-

imum reporting criteria for limited scalp electrode devices vs. 

accelerometry-based devices which have variable levels of ac-

curacy [12]. Wearable technologies will allow us a better under-

standing of sleep over months to years and can also be used in 

patients with more advanced disease who have been excluded 

so far from most studies. We are still in need of other devices 

that can help us better understand sleep-disordered breathing 

in neurodegenerative disease, and what endotypes and pheno-

types exist in the various populations [13].

The review also highlights a dearth of sleep micro-

architecture data in patients with MCI and dementia. Several 

relevant EEG features have already been shown to correlate 

with cognitive performance in healthy cohorts [14, 15] including 

measures of executive function and memory consolidation. 

Unfortunately, unlike sleep scoring parameters which are well 

established and agreed on, sleep micro-architecture analysis is 

performed on different signal processing software of unclear 

reproducibility. For instance, different investigators use cus-

tomized spindle detector and spindle-slow oscillation coupling 

analysis methods. Efforts to establish publicly available gold 

standard datasets to allow the comparison of these algorithms 

are strongly encouraged [16].

In their review, the authors also highlight the heterogen-

eity of participants with MCI and early dementia where the 

underlying cause of early dementia is often specified but that of 

MCI is unclear. Investigations of sleep and neurodegeneration 

need to determine the underlying pathology in each cohort and 

their cognitive phenotype to allow meaningful comparisons. For 

instance, individuals who develop symptomatic AD progress 

through an asymptomatic cognitively normal “preclinical” stage 

when amyloid-β (Aβ) is deposited as insoluble extracellular 

plaque and neurofibrillary tangles of hyperphosphorylated tau 

accumulate intracellularly eventually leading to neuronal loss, 

cognitive dysfunction, dementia, and death [17, 18]. Lumping 

participants into the mild dementia or MCI categories is prob-

lematic in the absence of good phenotyping due to the potential 

of including multiple neurodegenerative disease in the same 

cohort. PET ligands and CSF biomarkers are the gold standard 

for measuring AD pathology in vivo, although they are expen-

sive and invasive respectively. Blood-based biomarkers [19] are 

now available and will soon be well-established as an alterna-

tive, allowing researchers to recruit larger well-characterized 

populations who can be compared across studies. Finally, 

Blackman et  al. focused on MCI and early dementia but the 

issues raised in their review apply to cognitively normal indi-

viduals with amyloid deposition (i.e., preclinical AD), a group 

found to have changes in sleep despite the absence of cognitive 

symptoms [20, 21].

Another under-reported aspect of sleep that is highlighted in 

the review is that of circadian rhythm disruptions. In patients with 

neurodegenerative disease, alterations in the sleep-wake cycle 

are common, and disruption in circadian circuitry has relevant 

clinical implications with immediate effects on cognition, the 

autonomic system, and clearance of pathological proteins [22]. 

Actigraphy-based studies have already been explored, whereas 

the study of home-based salivary cortisol and melatonin meas-

urements as well as serum assessment of circadian genes is still 

in its infancy. Multi-modal based approaches will allow us a better 

understanding of how these biological rhythms change with dis-

ease and will help usher in several circadian-based interventions. 

Guidelines will be needed to better define circadian rhythms be-

yond solely relying on actigraphy. Light therapy and non-photic 

circadian synchronizers such as physical activity are already being 

explored [22], and future clinical trials will need robust reprodu-

cible outcomes. We can also foresee machine learning algorithms 

that analyze this multi-modal data and help us predict risk of 

falls, changes in blood pressure, nocturia, or sun-downing.

Now is an exciting time to study sleep and neurodegeneration. 

We will have to keep up with the advances in wearables, bio-

markers, home-based testing, and quantitative EEG analysis. 

We agree that expert-based core outcomes are needed to guide 

us as we explore these relationships further and expand sleep-

based clinical trials.
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