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Abstract
Study Objectives: There are only a few reports on voluntary swallowing during sleep; therefore, this study aimed to propose a method for observing voluntary 

swallowing during sleep using polysomnography. The frequency of voluntary swallowing during sleep and the factors related to swallowing and aspiration during 

sleep were investigated.

Methods: Polysomnography records of 20 control subjects and 60 patients with obstructive sleep apnea (OSA) (mild, moderate, and severe groups; n = 20 each) were 

collected. Simultaneous increases in the electromyographic potentials of the submental and masseter muscles, termed coactivation, and declining oronasal airflow 

(SA) were extracted as “swallowing.” The cough reflex that occurred during sleep was extracted as “aspiration.” The frequency of swallowing events was compared 

among the different OSA severity groups. Subsequently, a multivariate regression analysis was performed.

Results: The average frequency of coactivation with SA in control subjects was 4.1 events/h and that without SA was 1.7 events/h. These frequencies increased 

with the severity of OSA during non-REM sleep. The distance of the hyoid to the Frankfurt plane was associated with the frequency of coactivation with (β = 0.298, 

p = 0.017) as well as without SA (β = 0.271, p = 0.038). The frequency of coactivation without SA was associated with aspiration (B = 0.192, p = 0.042).

Conclusions: Our data provide new insights into the relationship between swallowing and aspiration during sleep. We found that the longer the distance from the 

hyoid bone to the Frankfurt plane, the higher the coactivation without SA, which could lead to aspiration during sleep.

Clinical Trials: Retrospective observational study of swallowing during sleep in obstructive sleep apnea patients using polysomnography, https://upload.umin.ac.jp/

cgi-open-bin/ctr/ctr_view.cgi?recptno=R000050460, UMIN000044187.
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Statement of Significance

Aspiration pneumonia has garnered substantial clinical attention. Aspiration during sleep is as important as in the awake state; however, 

there are a few studies on this topic. This is primarily due to the lack of appropriate methods to detect swallowing during sleep. Here, we 

propose a method for observing voluntary swallowing during sleep and determine the frequency of voluntary swallowing during sleep in 

subjects without obstructive sleep apnea and in patients with obstructive sleep apnea, as many studies show that patients with obstructive 

sleep apnea have abnormal swallowing while awake. The association between the frequency of voluntary swallowing and aspiration during 

sleep was also investigated. Our findings may improve understanding of the physiological and pathological roles of aspiration during sleep.
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Introduction

Swallowing and breathing share a passage in the pharynx. 

During swallowing, the oral, pharyngeal, esophageal, and re-

spiratory systems act in concert and protect the airway from 

aspiration [1–3]. Therefore, dysfunctions of these systems may 

lead to aspiration [4]. Swallowing and aspiration occur during 

sleep, as in the awake state; however, there are a few reports on 

these events during sleep, and the cause of aspiration remains 

unknown [5–8].

The swallowing process can be divided into consecutive oral, 

pharyngeal, and esophageal phases [9]. In the oral phase (vol-

untary phase), the mouth is closed, the tongue is elevated, and 

the oral cavity is temporarily sealed. The pharyngeal phase (in-

voluntary phase) starts with the stimulation of the neural af-

ferents in the oropharynx [10, 11]. When the swallowing reflex 

starts, the larynx is pulled up so that the epiglottis covers the 

entrance to the trachea. During swallowing, swallowing apnea 

occurs, which is an involuntary pause in ventilation that nor-

mally lasts for 0.5‒1.0 s [12–15]. The healthy swallowing reflex is 

well-coordinated with the respiratory pattern [1, 11, 16–20], and 

changes in respiratory patterns impair the coordination of swal-

lowing and breathing [21, 22].

There are also many reports on swallowing in patients 

with sleep apnea [23–42]. One study compared swallowing re-

flexes between control subjects and patients with sleep apnea 

by inducing swallowing with water while awake. The results 

revealed that the time between water bolus injection and the 

onset of swallowing was increased in patients with sleep apnea, 

causing an abnormal swallowing reflex [42]. A  recent study 

by Pizzorni et  al. [36]. reported that 15% of patients with OSA 

(N = 951) had symptoms of dysphagia, and 35 of these underwent 

a fiberoptic endoscopic evaluation of swallowing. Furthermore, 

patients with OSA had a lower bolus location at swallow onset, 

greater pharyngeal residue, and higher frequency and severity 

of penetration and aspiration events when compared to healthy 

subjects. However, they were unable to identify any associations 

between polysomnographic indices and dysphagia symptoms 

in patients with OSA using standard polysomnographic indices 

routinely used in clinical practice; therefore, they recommended 

the use of other polysomnographic indices in future studies to 

identify associations. In addition, a large epidemiological study 

of 34,100 people reported that patients with sleep apnea were at 

a 1.2-fold higher risk of pneumonia [43].

By observing voluntary swallowing of patients with sleep 

apnea during sleep, the effect of abnormal swallowing reflexes 

on swallowing during sleep can be investigated. A better under-

standing of the relationship between abnormal swallowing 

reflex and aspiration during sleep may help elucidate the mech-

anism of aspiration during sleep, as well as improve sleep apnea 

management.

Regarding the noninvasive observation method of swal-

lowing, swallowing-associated maxillofacial muscle activity has 

been recorded using surface electromyograms during the awake 

state [11, 44–51]. According to these studies, when swallowing 

was induced in the participants, surface electromyogram (EMG) 

activities of the masseter, temporalis, pterygoid, and submental 

muscles occurred during the oral phase of swallowing. The mas-

seter, temporalis, and pterygoid muscles are used to close the 

mouth. The submental muscle is used for elevating the tongue. 

Furthermore, some researchers have also examined swallowing 

apnea by recording changes in respiration during the awake 

state [16, 17, 52–54].

In this study, we proposed a method for observing voluntary 

swallowing during sleep, using polysomnography. Simultaneous 

activity of the masseter muscle EMG and submental muscle 

EMG (coactivation), as well as swallowing apnea (SA), were 

monitored. The frequency of voluntary swallowing during sleep 

was determined, and the factors related to swallowing and as-

piration during sleep were investigated.

Methods

This retrospective observational study was approved by the eth-

ical review committee of Nippon Dental University at Niigata 

(ECNG-R-429) and was registered in the UMIN Clinical Trial 

Registry (UMIN000044187, May 12, 2021; https://upload.umin.

ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000050460). Only 

data from patients who agreed to the use of the data obtained 

from examinations and treatments as research material were 

included. In addition, information on the research was made 

available on the university website, and the data were collected 

after confirming that there was no withdrawal of consent.

Subjects

Polysomnography and cephalography data of patients who 

visited the Dental Sleep Medicine Center at Nippon Dental 

University Niigata Hospital certified by the Japanese Society of 

Sleep Research and underwent polysomnography for detailed 

examination of obstructive sleep apnea (OSA) were included. 

The exclusion criteria were as follows: refusal to participate in 

this study or the presence of deglutition disorders, neurological 

disorders, respiratory disorders, maxillofacial deformities re-

quiring surgical treatment, odontoparallaxis, and malocclusion.

A total of 95 consecutive subjects were enrolled in the study 

and 15 were excluded (No consent: 10, Insufficient recorded 

data: 3, Neurological disorders: 2); therefore, 80 subjects (n = 43 

males, n = 37 females) were included in the final analysis. The 

average age was 53.9 ± 15.4 years.

Polysomnography records

Polysomnography was performed using a polysomnography 

system (SAS1100, NIHON KOHDEN, Inc., Tokyo, Japan) in a quiet 

room in the hospital. The monitoring items were as follows: 

electroencephalogram (EEG), bilateral electrooculogram (EOG), 

submental muscle-EMG and masseter muscle-EMG, snoring 

sounds, airflow (using a nasal pressure cannula and oronasal 

thermistor), inductive bands on the chest and abdomen, elec-

trocardiogram (ECG), percutaneous oxygen saturation, surface 

EMG of the bilateral anterior tibialis muscles, body position, and 

video recording with a night-vision camera.

Silver–silver chloride electrodes with a diameter of 8  mm 

(NIHON KOHDEN, Inc.) were used for EEG, EOG, EMG, and ECG 

recordings and arranged according to the American Academy of 

Sleep Medicine (AASM) scoring manual [55]. Two bipolar surface 

electrodes on the left and right were used for masseter muscle-

EMG; these were placed on the muscle belly of the masseter 

muscle along a muscle fiber and exocanthion–gonion line, with 

the upper electrode placed under the tragus labial commissural 
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line [45]. After all the sensors were placed, calibration was per-

formed, including for spontaneous swallowing, mouth opening, 

and closing.

Sleep stages and respiratory events were analyzed by profes-

sional clinical laboratory technologists certified by the Japanese 

Society of Sleep Research. Scoring of sleep stages and respira-

tory events was performed based on the AASM scoring manual 

[55], whereby criteria for hypopnea were defined as a decrease 

of 30% or more in nasal pressure and 4% or more in oxygen 

desaturation.

Based on the apnea-hypopnea index (AHI) analyzed, 

polysomnography records were grouped according to OSA se-

verity. Patients whose AHI was less than 5 events/h were allo-

cated to the control group, those with 5 to less than 15 events/h 

were allocated to the mild group, those with 15 to less than 

30 events/h were allocated to the moderate group, and those 

with more than 30 events/h were allocated to the severe group. 

Control subjects were referring to patients who visited our 

center with complaints of sleepiness or snoring whose PSG test 

results showed no pathological sleep disorder.

Detection of swallowing movements from 
polysomnography records

Polysomnography records were visually analyzed to identify 

swallowing movements by an investigator blinded to patient 

information. All simultaneous increases in the excitation of 

waveform potentials of submental muscle-EMG and masseter 

muscle-EMG during sleep, termed coactivation, were extracted. 

Airflow waveforms before and after each coactivation were 

similarly assessed. SA was evaluated mainly using an oronasal 

airflow (thermistor) with good sensitivity. Since the change 

in respiratory waveform differs depending on the respiratory 

phase during swallowing, a sample of the change in the respira-

tory waveform for each respiratory phase during swallowing 

was created with reference to the report by Paydarfar et al. [1]. 

Subsequently, the corresponding respiratory waveform was de-

termined to be SA. Three oronasal airflow waveforms before 

coactivation were used as the typical respiratory waveforms be-

fore swallowing.

To extract only the coactivation frequency during sleep, only 

the polysomnography epochs (judged by professional clinical la-

boratory technologists with 20  years of experience) related to 

the sleep state were targeted, and those related to arousal and 

the awake state were excluded from the analysis.

Detection of aspiration during sleep

The night-vision camera recording was used with the 

polysomnography waveform to extract the cough reflex that oc-

curred during sleep, which was considered to reflect aspiration.

Cephalometric radiograph analysis

Cephalometric radiographs (Figure 1) were obtained for diag-

nosis under the following conditions: awake, upright, resting ex-

piratory level during nasal breathing, and maximal intercuspal 

position, before the polysomnography test. To assess the skel-

etal structure, cephalometric radiographs were reanalyzed 

by an investigator (A.K.) blinded to patient information, using 

a cephalometric analysis program (WinCeph version 10, Rise 

Corporation, Miyagi, Japan). The analysis items were the angle 

between the S-N and the N-A line (SNA) and the angle between 

the S-N and N-B line (SNB), which indicate the anteroposterior 

position of the maxilla and the mandible with respect to the cra-

nial base, respectively. Additionally, we analyzed the angle be-

tween the Ba-N and Pt-(Intersection of N-Pog[R] and Go[L]-Me) 

lines (facial axis angle of Ricketts), which indicates the direction 

of mandibular growth with respect to the cranial base. The dis-

tance of the hyoid to the Frankfurt plane (FPH) was also meas-

ured [56].

Statistical analysis

The primary outcomes were the frequency of voluntary swal-

lowing and aspiration during sleep, which were compared be-

tween control subjects and patients with OSA. The secondary 

outcomes were factors related to the frequency of voluntary 

swallowing and aspiration during sleep. Values are presented 

as means (standard deviation) and median (first quartile‒third 

quartile).

The sample size was calculated using Gpower 3.1 [57, 58] 

with f = 0.4, α = 0.05 (two-sided), and 1-β = 0.8. The minimum 

total sample size was calculated as 76. The polysomnography re-

cords were collected from consecutive patients from the control 

group and from each OSA severity group (mild, moderate, and 

severe) since January 15, 2021.

Age, sex, body mass index (BMI), SNA, SNB, facial axis, FPH, 

sleep efficiency, the appearance rate of non-REM sleep, and REM 

sleep were compared between control subjects and patients 

with OSA. A normality test (Shapiro‒Wilk test) was performed 

for items other than sex. Unpaired t-tests were applied if the 

data had a normal distribution, while Mann‒Whitney’s U test 

N

Ba

Pt

Go(L)

MeHyoid

A

B

S

Po

Or

Pog (R)

FPH

Figure 1. Cephalometric analysis. Cephalograms were obtained under 

the standing, occlusal, and resting expiratory conditions. A, subspinale; B, 

supramentale; Ba, basion; Facial axis angle of Ricketts, angle between Ba-N and 

Pt-(Intersection of N-Pog[R] and Go[L]-Me) line; FPH, distance of the hyoid to 

the Frankfurt plane (Or-Po line); Go[L], lower gonion; Me, menton; N, nasion; Or, 

orbitale; Po, porion; Pog[R], pogonion (Ricketts); Pt, pterygomaxillary fissure; S, 

sella; SNA, angle between SN and NA line; SNB, angle between SN and NB line.
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was applied if the data were not normally distributed. For sex 

comparisons, a chi-square test was performed.

The frequency of swallowing movements was calculated by 

dividing the number of swallowing movements by total sleep 

time. The frequency of aspiration per night was counted and 

compared between control subjects and patients with OSA. In 

addition, the frequency of swallowing movements of non-REM 

sleep or REM sleep was also calculated by dividing the number 

of swallowing movements of each sleep stage by the total dur-

ation of each sleep stage. The frequency of aspiration during 

non-REM sleep and during REM sleep were counted. The stat-

istical method for comparing control subjects and patients 

with OSA was also as described above. Moreover, a comparison 

between non-REM sleep and REM sleep was performed. A nor-

mality test (Shapiro‒Wilk test) was performed, and the paired 

t-test was used if the data distribution was homoscedastic, 

while the Wilcoxon signed-rank test was used if the data distri-

bution did not follow such a distribution.

In the comparison among the four groups according to OSA 

severity, a normality test (Shapiro‒Wilk test) was performed, 

and one-way analysis of variance (ANOVA) and the Tukey 

test were applied if the items were normally distributed and 

homoscedastic, while One-way ANOVA with Welch test and 

the Games‒Howell test were applied if the items had a healthy 

but not homoscedastic distribution, and the Kruskal‒Wallis 

test was applied to variables with distributions other than the 

healthy distribution.

For secondary outcomes, multiple linear regression analysis 

was performed using the forced input method, with the de-

pendent variable being the frequency of swallowing movements 

and the independent variable being the item associated with 

the severity of OSA. In addition, binomial logistic regression 

analysis was performed using the variable reduction method 

based on the likelihood ratio, with the item indicating the pres-

ence or absence of aspiration as the dependent variable and age, 

sex, BMI, SNA, SNB, facial axis, FPH, sleep efficiency, and the fre-

quency of swallowing movement as the independent variables. 

A correlation matrix was created in advance when inputting the 

independent variables to confirm that there was no coarse cor-

relation with r > 0.80 among the independent variables.

IBM SPSS Statistics version 25 (IBM. Armonk, NY, USA) was 

used for all statistical analyses. Statistical significance was set 

at p < 0.05.

Results

Table 1 shows the comparison between control subjects and pa-

tients with OSA based on patient characteristics, the results of 

cephalometric radiograph analysis, and the polysomnography 

test. The unpaired t-test was applied to comparisons of age, BMI, 

SNA, SNB, facial axis, FPH, and sleep stage rate, and the Mann‒

Whitney U test was applied to comparisons of sleep efficiency. 

Significant differences between control subjects and patients 

with OSA were observed in age (p = 0.030), BMI (p = 0.015), and 

FPH (p < 0.001). The OSA group was older and had a higher BMI 

and a longer pharyngeal length than the control group.

Table 2 shows the frequencies of swallowing movements and 

aspiration during sleep. Two types of swallowing events were 

observed during sleep: coactivation with SA and coactivation 

without SA (Figure 2). The unpaired t-test was applied to 

overall coactivation, overall coactivation during non-REM sleep, 

coactivation with SA, and coactivation with SA during non-REM 

sleep. Mann‒Whitney’s U test was applied to all other compari-

sons. The Wilcoxon signed-rank test was used to compare non-

REM sleep and REM sleep. Swallowing movement in non-REM 

sleep was significantly higher in the OSA group than in the con-

trol group (overall coactivation, p < 0.001; coactivation with SA, 

p < 0.001; coactivation without SA, p < 0.001), whereas there was 

no significant difference between the groups in REM sleep.

Table 3 shows the comparison of the frequency of swal-

lowing events among the groups according to OSA severity. 

One-way ANOVA and Tukey’s test were applied to coactivation 

with SA, and One-way ANOVA with Welch test and the Games‒

Howell test was applied to overall coactivation and coactivation 

with SA during non-REM sleep. The Kruskal‒Wallis test was ap-

plied to other comparisons. The frequency of swallowing move-

ment during non-REM sleep increased with the severity of OSA 

(overall coactivation, p = 0.001; coactivation with SA, p = 0.003; 

coactivation without SA, p  =  0.005), but the percentage of 

coactivation without SA was constant with no difference.

Table 4 shows the factors related to the frequency of swal-

lowing events. The items related to AHI in Table 1 (age, BMI, FPH, 

and sleep efficiency) were examined. FPH was most strongly 

associated with the frequency of swallowing events (overall 

coactivation: β = 0.345, p = 0.006, coactivation with SA: β = 0.298, 

p = 0.017, coactivation without SA: β = 0.271, p = 0.038), indicating 

that the further the caudal displacement of the hyoid, the higher 

is the frequency of swallowing events.

Table 5 presents the factors related to aspiration during 

sleep. Sleep efficiency and the frequency of coactivation without 

SA were selected by stepwise selection. An increased frequency 

of coactivation without SA was a risk factor for aspiration during 

sleep (B = 0.192, p = 0.042, odds ratio = 1.212).

Discussion

Voluntary swallowing during sleep

Coactivation with SA and coactivation without SA were ob-

served during sleep. Since SA indicates the presence of the 

swallowing reflex, coactivation with SA is considered to be a 

swallowing movement that triggers the swallowing reflex, while 

coactivation without SA is considered to be a swallowing move-

ment that does not trigger the swallowing reflex. Therefore, 

coactivation with SA was termed as complete swallowing, and 

coactivation without SA was termed as incomplete swallowing.

There have been several studies that have observed swal-

lowing during sleep, and they found that laryngeal movements 

are associated with the swallowing reflex. In particular, they 

reported swallowing frequencies of 5.3  ±  1.7, 5.8, and 2.9  ±  1.3 

events/h while sleeping in 20, 10, and 8 subjects, respectively [5, 6, 

59]. These values are considered to correspond to the frequency 

of complete swallowing in this study, and the frequency noted in 

our study was 4.1 ± 2.2 events/h in control subjects, which was 

consistent with same values reported in the previous reports on 

laryngeal movements. Although laryngeal movement is an effi-

cient indicator to observe swallowing, stable recording of laryn-

geal movement may be difficult, especially in severely ill patients 

with OSA because they may be obese and have a lot of fat near the 

larynx or frequent laryngeal movements due to breathing efforts. 

Therefore, we selected the masseter and submental muscles, 

which are less affected by extra fat around the muscles.
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In this study, we showed that, even in control subjects, in-

complete swallowing occurs, and when coactivation occurs 

during sleep, complete swallowing and incomplete swallowing 

occur at a certain rate. Therefore, patients with OSA may have 

increased frequencies in both complete and incomplete swal-

lowing due to increased coactivation.

The reason for this increase in coactivation may be an increase 

in incomplete swallowing, related to the caudal position of the 

hyoid bone. Studies of induced swallowing during arousal have 

reported that patients with OSA have a delayed swallowing onset 

[42]. Caudal displacement of the hyoid bone is one of the fea-

tures of patients with OSA. This displacement of the hyoid bone 

may make it difficult to lift the larynx to the position required 

for swallowing, causing a delay in swallowing onset. In addition, 

it has been reported that prolonged intervals to laryngeal ves-

tibule closure may lead to unsafe deglutition and aspiration in 

older patients with neurogenic dysphagia and aspiration associ-

ated with stroke [60]. Since aspiration was observed in subjects 

with more incomplete swallowing, it was considered that a delay 

in the onset of swallowing may lead to incomplete swallowing. 

With incomplete swallowing, the pharynx is not cleared, and the 

substances accumulated without swallowing may then stimulate 

swallowing and induce coactivation (Figure 3). Although only in-

complete swallowing was expected to increase, results revealed 

increased frequencies in both complete and incomplete swal-

lowing due to increased coactivation in patients with OSA.

Swallowing during sleep in patients with OSA

This is the first study to investigate the relationship between 

pharyngeal length and swallowing. We unexpectedly found that 

the pharyngeal length was more strongly associated with the 

frequency of swallowing during sleep than with AHI.

Many studies on swallowing in patients with OSA have re-

ported that patients with OSA have impaired sensory and motor 

function of the pharyngeal structure, due to the low-frequency vi-

brations of habitual snoring and presence of abnormal signs of 

swallowing [23–37, 39–42]. These factors are thought to be involved 

in the delay of the onset of swallowing [42]. In this study, we pre-

dicted that the frequency of apnea and hypopnea events would be 

strongly associated with the frequency of incomplete swallowing. 

The more apnea and hypopnea events, the more laryngeal move-

ment occurred due to breathing effort, and the more unstable was 

the switching between breathing and swallowing. We considered 

this to be related to swallowing and aspiration during sleep. 

However, our results were different. Since many patients with OSA 

have a longer pharynx, it is possible that previous studies had re-

lated AHI to the frequency of swallowing during sleep [61].

Differences in swallowing during non-REM sleep 
and REM sleep

As there was no difference in the frequency of swallowing during 

REM sleep between the control and OSA groups, it seemed pos-

sible that the incidence of REM sleep per se was low and that it 

was insufficient to compare the frequency of swallowing during 

REM sleep. However, another possibility was that changes in re-

spiratory muscle function during the transition from non-REM 

sleep to REM sleep played a role [62–66].

The hyoid bone moves caudally due to increased lung 

volume during inspiration, possibly as a means to pre-

vent the airway from collapsing [56]. During REM sleep, 

Table 1. Patient characteristics and results of cephalometric radiograph analysis and polysomnography in control subjects and patients with 

obstructive sleep apnea

 All Control OSA P value 

Age (years) 53.9 (15.4)  

54.0 (44.0‒65.3)

47.5 (16.4)  

45.0 (31.8‒55.8)

56.1(14.6)  

55.0 (49.0‒67.3)

0.030

Sex (male:female) 43:37 7:13 36:24 n. s

BMI (kg/m2) 24.9 (5.0)  

24.2 (21.3‒26.9)

22.6 (3.2)  

22.1 (20.4‒24.2)

25.7(5.2)  

25.3 (22.6‒27.1)

0.015

SNA (°) 83.7 (3.4)  

83.5 (81.7‒85.4)

83.1 (2.4)  

83.2 (82.2‒83.8)

83.9 (3.6)  

83.6 (81.7‒85.5)

n. s

SNB (°) 79.1 (4.0)  

79.0 (77.0‒81.2)

78.9 (3.8)  

78.2 (76.8‒81.4)

79.2 (4.1)  

79.0 (77.1‒80.9)

n. s

Facial axis (°) 85.2 (4.8)  

85.5 (82.0‒88.2)

85.6 (4.8)  

86.1 (83.7‒89.1)

85.0 (4.8)  

85.3 (81.8‒88.0)

n. s

FPH (mm) 103.6 (9.9)  

103.2 (97.8‒109.8)

97.2 (6.7)  

98.7 (90.4‒101.7)

105.7(10.1)  

105.9 (100.0‒111.0)

<0.001

Sleep efficiency (%) 76.9 (14.8)  

82.0 (67.9‒86.4)

76.4 (19.1)  

85.5 (64.5‒89.7)

77.1(13.3)  

81.4 (68.3‒85.8)

n. s

Non‒REM sleep (%) 85.5 (5.1)  

85.4 (82.4‒88.1)

85.8 (5.8)  

85.5 (82.1‒88.0)

85.5 (5.0)  

85.2 (82.5‒88.4)

n. s

REM sleep (%) 14.5 (5.1)  

14.7 (11.9‒17.5)

14.2 (5.8)  

14.6 (12.1‒17.9)

14.5 (5.0)  

14.9 (11.7‒17.5)

n. s

AHI (events/h) 20.7 (19.4)  

14.7 (5.2‒30.1)

2.1 (1.4)  

1.7 (1.1‒3.1)

26.9 (18.6)  

20.9 (10.9‒41.8)

‒

Abbreviations: AHI, apnea hypopnea index; BMI, body mass index; Facial axis, angle between Ba-N and Pt-(Intersection of N-Pog[R] and Go[L]-Me) line; FPH, the 

distance of the hyoid to the Frankfurt plane; OSA, obstructive sleep apnea; REM or non-REM sleep, the appearance rate of the respective sleep stages; SNA, angle be-

tween S-N and N-A line; SNB, angle between S-N and N-B line.

In the table, the values given above are means (standard deviation), and those given below are median (first quartile‒third quartile). The unpaired t-test was applied 

to comparisons of age, BMI, SNA, SNB, facial axis, FPH, and sleep stage rate; and the Mann‒Whitney U test was applied to comparisons of sleep efficiency. p value re-

lates to the comparison between control and obstructive sleep apnea groups overall.
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diaphragm-dominant breathing occurs and lung volume de-

creases [62–65], and the hyoid bone accordingly moves to the 

cranial side. It is possible that the shortening of the pharynx 

eliminated the difference in the frequency of swallowing be-

tween the control and OSA groups during REM sleep. As a re-

sult, there was no difference in the frequency of swallowing 

between non-REM sleep and REM sleep in control subjects, 

whereas the frequency of swallowing decreased in REM sleep 

in patients with OSA.

Aspiration during sleep

Some aspirations does not cause cough reflex; however, there is 

no method to assess aspiration that does not trigger the cough 

reflex [67]. Silent aspiration is considered to be related to the 

laryngeal cleft, laryngomalacia, unilateral vocal fold paralysis, 

developmental delay, epilepsy/seizures, congenital heart dis-

ease, brain cancer, brain stroke, head‒neck cancer, pneumonia, 

dementia/Alzheimer’s disease, chronic obstructive lung disease, 

myocardial infarcts, and neurodegenerative conditions [68, 69]. 

As this study did not include patients with these disorders, the 

frequency of the cough reflex during sleep determined in our 

study was meaningful.

Premature oral leakage to the pharynx, pharyngeal stasis, 

and laryngeal penetration were considered to be the cause of 

aspiration during sleep [70]. The frequency of incomplete swal-

lowing may reflect the presence of these phenomena. Examining 

the frequency of incomplete swallowing during sleep may be 

useful in determining the risk of aspiration and silent aspiration 

during sleep.

Clinical implications of the study

It was suggested that improving the caudal displacement of the 

hyoid bone may prevent incomplete swallowing and aspiration 

during sleep. Oral appliances used to treat OSA may also im-

prove swallowing during sleep because they displace the hyoid 

bone to the cranial side [71, 72]. Furthermore, the position of the 

hyoid bone changes depending on the flexion and extension of 

the neck [73]. Extension of the neck is an effective approach to 

airway management [74]. It is considered that a flexed position 

of the neck is effective for swallowing during sleep. Therefore, to 

prevent aspiration during sleep, it may be important to sleep in 

a posture in which the neck is flexed while securing the airway 

with continuous positive airway pressure or oral appliances as 

necessary.

Table 2. The frequency of swallowing movement and aspiration during sleep

Swallowing events Sleep stage Control OSA P value 

Overall coactivation  

 (events/h)

Total 6.0 (2.6)  

6.6 (3.5‒7.4)

10.4 (5.7)  

9.2 (6.4‒14.5)

<0.001

Non-REM 5.7 (2.7)  

5.7 (3.5‒7.2)

11.0 (6.1)  

10.4 (6.6‒15.4)

<0.001

REM 8.1 (7.2)  

4.9 (2.9‒11.9)

9.4 (13.5) **  

5.2 (3.1‒10.7)

n. s

Coactivation  

with swallowing apnea  

(events/h)

Total 4.1 (2.2)  

4.6 (2.4‒5.3)

6.6 (3.8)  

6.0 (4.2‒8.5)

0.007

Non-REM 4.1 (2.2)  

3.9 (2.5‒5.7)

7.0 (4.2)  

6.4 (4.4‒9.3)

<0.001

REM 5.6 (5.4)  

3.5 (1.8‒9.6)

6.4 (11.7) **  

3.3 (1.4‒7.1)

n. s

Coactivation  

without swallowing apnea  

 (events/h)

Total 1.7(1.0)  

1.6 (1.0‒2.1)

3.8 (3.0)  

2.8 (1.8‒5.7)

0.002

Non-REM 1.6 (0.9)  

1.4 (0.9‒2.1)

4.0 (3.2)  

2.9 (1.6‒5.8)

<0.001

REM 2.3 (2.8)  

1.8 (0.0‒3.5)

3.0 (3.8) **  

1.7 (0.0‒4.2)

n. s

Percentage of coactivation  

without swallowing apnea  

(%)

Total 28.6 (11.9)  

24.4 (20.2‒38.9)

35.8 (15.3)  

35.1 (27.7‒44.4)

0.025

non-REM 28.7 (12.2)  

26.1 (19.9‒38.5)

35.6 (15.7)  

0.4 (0.2‒0.4)

n. s

REM 31.3 (27.9)  

31.0 (2.4‒48.9)

35.2 (32.7)  

0.3 (0.0‒0.6)

n. s

Aspiration  

(events/night)

Total 1.7 (2.0)  

1.0 (0.0‒2.3)

1.6 (2.7)  

0.0 (0.0‒2.0)

n. s

non-REM 1.4 (2.1)  

0.5 (0.0‒2.0)

1.3 (2.5)  

0.0 (0.0‒1.3)

n. s

REM 0.3 (0.6) *  

0.0 (0.0‒0.3)

0.3 (0.7) **  

0.0 (0.0‒0.0)

n. s

Total frequency of swallowing events and the comparison of the frequency between control and obstructive sleep apnea (OSA) groups, and between nonrapid eye 

movement (REM) sleep and REM sleep. Percentage of coactivation without swallowing apnea (SA): the ratio of coactivation without SA to overall coactivation. Values 

given above are the means (standard deviation), and those given below are the median (first quartile‒third quartile). The unpaired t-test was applied to coactivation, 

coactivation during non-REM sleep, coactivation with SA, and coactivation with SA during non-REM sleep. Mann‒Whitney’s U test was applied to all other compari-

sons. The Wilcoxon signed-rank test was used to compare non-REM sleep and REM sleep. The P value represents the comparison between control and OSA groups. 

*: p < 0.05
**: p < 0.01 vs. non‒REM sleep.
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The cause of caudal displacement of the hyoid bone is con-

sidered to be infra-hyoid muscle activation [75, 76], displace-

ment of excessive soft tissue [77, 78], and tracheal traction by 

lung inflation [73, 79]. These phenomena are common in pa-

tients with OSA. Therefore, early initiation of OSA treatment 

prevents caudal displacement of the hyoid bone and may pre-

vent incomplete swallowing and aspiration during sleep. In add-

ition, without considering the position of the hyoid bone, it may 

be possible to control the increase or decrease in incomplete 

swallowing by changing the swallowing threshold.

Limitations

This study was conducted on a small cohort of a limited demo-

graphic group in a single medical center. Large-scale surveys in 

different facilities are necessary to confirm our results. Similar 

studies can be performed by simply adding swallowing analysis 

to the normal polysomnography analysis.

Furthermore, future studies should investigate the relation-

ship between incomplete swallowing and aspiration that does 

not cause the cough reflex. This will require the development of 

a method to extract this particular process.

Conclusion

Our data provided insight into the relationship between swal-

lowing and aspiration during sleep. These findings contribute 

to the understanding of the physiological and pathological 

role of aspiration during sleep. The results showed that incom-

plete swallowing can be reduced by moving the hyoid bone to 

the cranial side and shortening the distance of the hyoid to 

the Frankfurt plane. This procedure may prevent aspiration 

during sleep.
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Figure 2. Detection of swallowing. (a) Coactivation with swallowing apnea, and (b) coactivation without swallowing apnea. A simultaneous increase in the excitation 

of waveform potentials of submental muscle-electromyogram (EMG) and masseter muscle-EMG (L and R), termed coactivation (solid-line arrows), was identified. It was 

accompanied by a decline in oronasal airflow (dotted-line arrow) (a). Coactivation (solid-line arrows) was identified, but there was no change in respiratory waveform 

before and after coactivation (b).
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Table 4. Factors related to the frequency of swallowing movement during sleep

Dependent variable Independent variable 

Standardized  

regression coefficient P value 

95% confidence interval

Variance inflation factor Lower limit Upper limit 

Overall  

coactivation  

(events/h)

FPH (mm) 0.345 0.006 0.055 0.324 1.362

AHI (events/h) 0.139 0.349 ‒0.043 0.122 1.970

Age (years) ‒0.092 0.446 ‒0.117 0.052 1.297

BMI (kg/m2) ‒0.071 0.563 ‒0.346 0.190 1.370

Constant  0.398 ‒24.992 10.034  

Coactivation  

with swallowing 

apnea  

(events/h)

FPH (mm) 0.298 0.017 0.020 0.200 1.362

AHI (events/hour) 0.212 0.155 ‒0.015 0.095 1.970

BMI (kg/m2) ‒0.142 0.253 ‒0.283 0.075 1.370

Age (years) ‒0.067 0.575 ‒0.072 0.040 1.297

Constant  0.632 ‒14.530 8.883  

Coactivation  

without swallowing 

apnea  

(events/h)

FPH (mm) 0.271 0.038 0.004 0.149 1.362

Age (years) ‒0.114 0.364 ‒0.066 0.025 1.297

AHI (events/h) 0.040 0.798 ‒0.039 0.050 1.970

BMI (kg/m2) 0.014 0.912 ‒0.136 0.152 1.370

Constant  0.418 ‒13.259 5.567  

The table shows the results of multiple linear regression analysis based on the forced input method. BMI, body mass index; FPH, The distance of the hyoid to the 

Frankfurt plane; AHI, apnea/hypopnea index. There were no outliers with predicted values exceeding ± 3 standard deviations with respect to the measured values.

Table 3. Comparison of the frequency of swallowing events among groups by obstructive sleep apnea severity

Swallowing events Sleep stage 

Severity of obstructive sleep apnea

P value Normal Mild Moderate Severe 

Overall coactivation  

(events/h)

Total 6.0 (2.6)  

6.6 (3.5‒7.4)

10.1 (6.9)  

9.2 (4.9‒14.3)

10.1 (5.2) *  

9.2 (6.9‒11.6)

10.9 (5.1) **  

10.5 (6.4‒14.6)

<0.001

non‒REM 5.7 (2.7)  

5.7 (3.5‒7.2)

10.3 (7.3)  

9.9 (4.2‒14.8)

11.0 (5.9) **  

9.9 (7.3 13.2)

11.8 (5.3) **  

12.6 (7.1‒15.7)

0.001

REM 8.1 (7.2)  

4.9 (2.9‒11.9)

9.2 (6.9)  

6.8 (4.4‒11.6)

8.8 (11.2)  

5.0 (3.1‒9.5)

10.2 (19.8)  

3.7 (2.2‒10.9)

n. s

Coactivation with swallowing apnea  

(events/h)

Total 4.1 (2.2)  

4.6 (2.4‒5.3)

6.0 (3.9)  

5.8 (3.2‒8.6)

6.3 (3.4)  

5.8 (4.5‒7.8)

7.3 (4.2) *  

6.4 (4.2‒9.9)

0.034

non‒REM 4.1 (2.2)  

3.9 (2.5‒5.7)

6.3 (4.3)  

6.2 (2.8‒8.5)

7.0 (4.0) *  

5.8 (4.5‒8.3)

7.9 (4.5) *  

6.7 (4.4‒11.3)

0.003

REM 5.6 (5.4)  

3.5 (1.8‒9.6)

4.9 (3.3)  

4.5 (2.5‒7.9)

6.1 (10.0)  

2.8 (1.8‒5.4)

8.2 (17.6)  

2.6 (0.8‒8.1)

n. s

Coactivation without swallowing apnea  

 (events/h)

Total 1.7 (1.0)  

1.6 (1.0‒2.1)

4.1 (3.6)  

2.4 (1.2‒6.2)

3.8 (2.9) *  

3.5 (1.9‒4.8)

3.6 (2.6)  

2.8 (2.2‒5.0)

0.018

non‒REM 1.6 (0.9)  

1.4 (0.9‒2.1)

4.0 (3.8)  

2.4 (1.4‒6.4)

4.0 (3.3) *  

3.6 (1.8‒5.5)

3.9 (2.8) **  

3.1 (2.5‒5.4)

0.005

REM 2.3 (2.8)  

1.8 (0.0‒3.5)

4.3 (4.6)  

3.0 (0.9‒5.5)

2.7 (3.3)  

1.6 (0.0‒3.4)

2.0 (3.0)  

0.0 (0.0‒3.0)

n. s

Percentage of coactivation without swal-

lowing apnea (%)

Total 28.6 (11.9)  

24.4 (20.2‒38.9)

38.1 (13.5)  

36.8 (28.8‒45.4)

35.6 (15.8)  

35.0 (28.8‒41.5)

33.7 (17.0)  

33.1(20.8‒46.0)

n. s

non‒REM 28.7 (12.2)  

26.1 (19.9‒38.5)

37.4 (16.6)  

36.5 (26.1‒42.2)

34.9 (14.0)  

35.6 (28.5‒40.7)

34.5 (17.0)  

33.8 (21.4‒47.9)

n. s

REM 31.3 (27.9)  

31.0 (2.4‒48.9)

43.8 (32.8)  

47.7 (14.6‒64.9)

32.6 (30.2)  

30.0 (2.5‒50.0)

27.9 (34.7)  

11.1 (0.0‒50.0)

n. s

Aspiration  

(events/night)

Total 1.7 (2.0)  

1.0 (0.0‒2.3)

2.2 (3.6)  

0.5 (0.0‒3.0)

0.3 (0.7)  

0.0 (0.0‒0.0)

2.4 (2.6)††  

1.5 (0.8‒2.5)

0.006

non‒REM 1.4 (2.1)  

0.5 (0.0‒2.0)

2.0 (3.5)  

0.0 (0.0‒3.0)

0.3 (0.7)  

0.0 (0.0‒0.0)

1.7 (2.3)  

1.0 (0.0‒2.0)

n. s

REM 0.3 (0.6)  

0.0 (0.0‒0.3)

0.2 (0.4)  

0.0 (0.0‒0.0)

0.0 (0.0)  

0.0 (0.0‒0.0)

0.6 (1.0)††  

0.0 (0.0‒1.0)

0.013

REM, rapid eye movement; Percentage of coactivation without swallowing apnea: the ratio of coactivation without SA to overall coactivation. The values in the 

table indicate the mean (standard deviation), and those given below are the median (first quartile‒third quartile). One-way ANOVA and Tukey’s test was applied to 

coactivation with SA. One-way ANOVA with Welch test and Games‒Howell test was applied to overall coactivation and coactivation with SA during non-REM sleep. 

The Kruskal‒Wallis test was applied to all other comparisons. The P value represents the comparison among the four groups defined by obstructive sleep apnea 

severity.

*: p < 0.05
**: p < 0.01 vs. Normal
††: p < 0.01 vs Moderate.
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Figure 3. Diagram of the relationship of swallowing with aspiration during sleep. Even in control subjects, when coactivation occurs, approximately 70% of occurrences 

will involve complete swallowing, and about 30% will involve incomplete swallowing. Caudal displacement of the hyoid bone increases the frequency of incomplete 

swallowing. Incomplete swallowing cannot clear the pharynx; therefore, substances that are not swallowed accumulate in the pharynx, triggering swallowing and 

causing coactivation. Aspiration then occurs during incomplete swallowing.
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