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Abstract

Objective: To define a unified method for the automatic recognition and quantitative description of EEG phasic events of sleep

microstructure occurring during NREM sleep, particularly arousals, phase A subtypes of cyclic alternating pattern and spindles.

Methods: The NREM sleep EEG of 10 normal young subjects was examined in order to recognize formal phasic events of sleep

microstructure. The following ‘formal’ events (i.e. events defined exclusively on the basis of automatic analysis criteria) were classified:

arousals, A1-phases (A-phases not including arousals) and A2- and A3-phases (A-phases including arousals). Spindle bursts, corresponding

to visually recognized spindles, were also formally defined. The identification of these events was carried out following a three-step

procedure: (1) computation of band-related descriptors derived from the EEG signal, (2) introduction of suitable thresholds and (3)

application of simple logical principles, i.e. an exclusion principle and an overlapping principle.

Results: Formal A-phases, arousals and spindle bursts showed spectral characteristics which were consistent with visual inspection. The

value of the parameter Correctness for the recognition of the A-phases was 83.5%. In particular, the different physiological distribution of the

A-phases in Stage 2 preceding slow wave sleep with respect to Stage 2 preceding REM sleep was confirmed.

Conclusions: The proposed method provides a unified quantitative approach to the study of sleep microstructure. Visually defined events

can be reliably identified by means of automatic recognition.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The twofold role of transient events in sleep scoring

Transient EEG waveforms or, more generally, transient

polygraphic events play a twofold role in sleep analysis.

First, their occurrence and their rate of occurrence are

fundamental in visual scoring of polysomnographic

measures according to Rechtschaffen and Kales’ [1] rules.

Events such as K-complexes, alpha bursts, spindles

and vertex sharp waves are well-known markers for stage

scoring.

Many transient events are not only landmarks for sleep

stage recognition but their occurrence plays an active role in

the dynamics of the sleep profile. This consideration is

supported by the increasing interest in arousals and other

microstructure components of sleep. The term microstruc-

ture refers to EEG features below the time dimension of the

conventional 20–30 s scoring epoch [1]. The recognition of

microstructure events provides physiological and clinical

information which integrates the macrostructure measures

obtained with the conventional staging system.

The criteria for recognition and classification of arousals

were established in 1992 by the American Sleep Disorders
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Association [2]. Agreement was found on the following

definition: ‘An EEG arousal is an abrupt shift in EEG

frequency, which may include theta, alpha and/or frequen-

cies greater than 13 Hz, but not spindles. The EEG

frequency shift must be 3 s or greater in duration to be

scored as an arousal.’

Another significant microstructure phenomenon is cyclic

alternating pattern (CAP) [3]. Criteria for the recognition

and classification of CAP were given in 2001 in a Consensus

Report [4], defined as the following: ‘The CAP is a periodic

EEG activity of non-REM sleep. CAP is characterized by

sequences of transient electrocortical events that are distinct

from background EEG activity and recur at up to 1 min

intervals.’ Recurring electrocortical events are called

A-phases and are divided into three classes: A1, A2, and

A3. CAP appears spontaneously but also in association with

identifiable sleep pathophysiologies such as sleep disor-

dered breathing [5] and periodic limb movement disorder

[6]. CAP evaluation includes the periodicity dimension in

the arousal process and attributes different levels of cerebral

activation as expressed by the phase A subtypes.

The phase A1 subtypes are composed of K-complexes

and delta bursts; they prevail in Stage 2 that precedes slow

wave sleep. Phases A2 and A3 of CAP are composed of

mixed EEG patterns including both slow and rapid

activities; they prevail in Stage 2 that precedes REM

sleep. An extensive overlap between ASDA arousals and

subtypes A2 and A3 has been demonstrated [7]. Due to their

complex EEG morphologies, arousals and CAP include a

variety of transient changes in different frequency bands.

1.2. Automatic analysis of microstructure phenomena

A number of automatic and quantitative methods for the

analysis of microstructure phenomena have been carried out

in the last decades. These methods often present high

agreement with visual analysis. We limit ourselves to

reporting briefly some of the most interesting events. A

general model for the analysis of sleep spindles and alpha

rhythms was proposed in the 1980s [8,9]. It was based on the

idea that EEG phenomena are generated by excitatory and

inhibitory neuronal populations interacting by means of

feedback loops. This model was then also applied to the

detection of vertex waves and K complexes [10]. In 1994,

Jobert et al. [11] suggested the application of the Wavelet

Transform to the analysis of transient events and supported

this idea with preliminary significant results. Pardey et al.

[12] proposed a neural network EEG analysis system based

on an autoregressive modeling of the signal; the EEG was

quantified on a continuous scale which was not linearly

related to conventional sleep stages. McKeown et al. [13]

described a method for detecting stage changes in the EEG,

which was based on the properties of a dimensionless

function calculated by using independent component

analysis. De Carli et al. [14] detected arousals applying

the Wavelet Transform to two bipolar EEG traces and one

EMG derivation. In a following study the same group [15]

compared the mean power values of the entire arousal with

the immediately preceding 3.5 s and found an enhancement

in the band of delta power relative to background. An

automatic system for the detection of CAP sequences was

proposed by Rosa et al. [16]. The system consisted of three

parts: a model-based maximum likelihood estimator, a

variable length template-matched filter, and a state machine

rule-based decision subsystem. The Matching Pursuit

Procedure, based on the decomposition of the signal into

waveforms with good localization in time and frequency,

was applied to the identification and parameterization of

spindles [17,18]. The method for spindle detection

described by Huupponen et al. [19] was based on the

application of a variable threshold the value of which was

estimated by Bayesian analysis. More recently, Huupponen

et al. [20] identified, via a mean frequency measure and

FFT, sleep oscillations with period times of 50–150 s having

a relatively large amplitude.

1.3. Approaches to automatic analysis

There are two different approaches for assessment of

automatic analysis of sleep EEG. One is the agreement with

the output of visual analysis. A remarkable example is

provided by the so-called ‘hybrid’ systems, developed in the

1970s, which are in part analog and in part digital. These

systems achieve a high rate of agreement with visual scoring

[21,22]. A second approach is based on the idea that

automatic signal processing can provide additional infor-

mation with respect to that given by visual analysis. An

example can be given by the characteristic damped-

oscillation pattern of the delta rhythm [23–25], which

provides important information, the details of which are not

contained in the histogram.

According to Kubicki et al. [26], an automatic analysis of

sleep EEG should emphasize the strengths of the computer,

with a substantial independence from visual analysis. The

Rechtschaffen and Kales’ rules [1] are conventional criteria

but can be inadequate for computer-based automatic

analysis.

If these considerations can be applied to the analysis of

sleep profile, they are even more suitable for the analysis of

phasic events of sleep microstructure. The aim of the study

was to define a unified method that stems from the

characteristics of visual analysis and introduces new criteria

closely connected to the discriminating properties of

automatic analysis.

2. Methods

2.1. General properties of the approach

The method applied in this study is an extension of

the computer-based procedure previously used for
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the recognition of CAP A-phases [27,28]. A-phases

including no arousals and with dominant EEG slow patterns

are assigned to A1 subtypes; this pattern is identified when

the delta descriptor crosses a given threshold even for a very

short time. The assignment of an A-phase to subtypes A2 or

A3 is based on the recognition of an arousal within the

A-phase [4]; the occurrence of this arousal is recognized by

the crossing of a given threshold by at least one of the theta,

alpha or beta descriptors.

We based the analysis of microstructure events on the

identification of two fundamental patterns (A-phases with

slow EEG components and arousals), and on their temporal

overlap. Because the adopted definitions partially bypass

visual criteria, automatically recognized events were

defined as ‘formal’.

2.2. Subjects and devices

The sleep EEG of 10 young subjects (5 males and 5

females) was studied. They presented no primary medical

or psychiatric disorder and used no drugs affecting the

central nervous system. Age ranged from 22 to 29 years.

The analysis was carried out on the third of three

consecutive nights spent in the sleep laboratory. The

polygraphic recording included eight EEG derivations

(F3-C3, C3-P3, P3-O1, F4-C4, C4-P4, P4-O2, C3-A2 and

C4-A1), EOG, EMG and respiration. The Galileo System

(Esaote Biomedica) was used for signal acquisition,

filtering and recording. Sleep stages were visually scored.

A visual recognition of the principal microstructure events

was also carried out.

2.3. EEG signal processing

The F4-C4 signal was used for automatic analysis. It was

filtered between 0.5 and 25 Hz (filter slope: 24 dB/oct),

sampled at 128 Hz and recorded on a CD.

The analysis procedures were written in Visual Basic 6

and run on a PC.

Using an FFT algorithm over intervals lasting 64 s, the

F4-C4 trace was decomposed into five band components:

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma

(12.5–14.5 Hz) and beta (15–20 Hz). For the computation of

the components, rectangular filters in the frequency domain

were applied and then the inverse Fourier transforms were

computed. All the remaining analyses were performed in the

time domain.

For each component, two amplitude averages were

computed every 0.5 s: one over an interval lasting 2 s and

the other over an interval lasting 64 s. The difference

between these two amplitudes, divided by the amplitude of

the average over the longer epoch, gave the dimensionless

band descriptor in the instant considered (the center of both

intervals). Amplitude was simply defined as the absolute

value of the signal. The time lengths for the averages were

chosen for following reasons:

(a) the longer length was consistent with the time lengths

usually considered for the construction of the hypnogram;

(b) the shorter length was taken according to two opposite

needs: it had to be short to provide information about

‘instantaneous’ events and long enough to cover an

entire period of the slowest Fourier component

considered (0.5 Hz); this length has been applied often

in the automatic analysis of microstructure events [29].

Two thresholds were introduced: the existence threshold,

equal to one, and the length threshold, equal to zero. Two

conditions were applied to recognize and classify the epochs

characterized by a microstructure event: (1) for at least one

instant, the existence threshold was overcome; (2) for all

instants (apart from isolated ones), the length threshold was

overcome. In other words, given a recognized event, the

existence threshold was overcome at least once by the

relevant descriptor (or by one of the relevant descriptors) and

the limits of the event were given by the first two consecutive

points at the left and the first two consecutive points at the

right, characterized by values of the relevant descriptor (or

all relevant descriptors) below the length threshold. The

relevant descriptors were those indicated in the definitions of

the various formal events (see Section 2.4).

For arousals, an ‘exclusion condition’ assured that the

delta bandwas not involved. The application of the exclusion

condition implied the introduction of a third threshold.

An ‘overlapping principle’ was also applied to recognize:

(a) sub-events occurring during a different event (e.g. an

arousal inside an A-phase) or (b) different events occurring

one immediately after the other (for instance two A-phases

separated by less than 1.5 s, which were unified into a single

A-phase; the value 1.5 s was chosen according to the visual

criteria for intervals between A-phases).

In order to see the interesting cases in which the slower

components in the delta band behaved differently from the

faster components in the same band, two additional

descriptors were computed for the lower delta (0.5–2 Hz)

and the higher delta (2–4 Hz) bands.

2.4. Definitions of the considered events

The following list reports the events considered for the

study of NREM sleep microstructure and their definitions

according to the automatic procedure.

1. Formal arousals:

– Existence threshold applied to theta, alpha and beta

bands.

– Length threshold applied to theta, alpha and beta

bands.

– Exclusion principle applied to delta band.

– Constraint due to the overlapping principle: no

overlapping with formal A1-phases.
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– Subtypes: (1) theta arousals; (2) alpha arousals; (3)

beta arousals. (When two descriptors overcame the

existence threshold, the arousal was labeled according

to the band characterized by higher values of the

descriptor.)

2. Formal A1-phases:

– Existence threshold applied to delta band.

– Length threshold applied to theta, alpha, sigma and

beta bands.

– Exclusion principle: none.

– Constraint due to the overlapping principle: no

overlapping with formal arousals.

– Subtypes: none.

3. Formal A-phases with arousals:

– Existence threshold applied to delta band.

– Length threshold applied to theta, alpha, sigma and

beta bands.

– Exclusion principle: none.

– Constraint due to the overlapping principle: overlap-

ping with formal arousals. (The application of this

overlapping principle obviously implied the indirect

application of different criteria for the thresholds and

for the exclusion principle.)

– Subtypes: (1) theta A-phases; (2) alpha A-phases; (3)

beta A-phases.

Formal spindle bursts, corresponding to visually recog-

nized spindles, were also considered in order to check the

applicability of the method to transient events different from

CAP A-phases and arousals. We limited ourselves to events

lasting at least 2.5 s. We checked, however, that a selective

decrease of the shorter average epoch for the sigma

component made it possible to recognize shorter spindles.

Formal spindle bursts were defined as follows:

– Existence threshold applied to sigma band.

– Length threshold (2.5 s) applied to sigma band.

– Exclusion principle: none.

– Overlapping principle: see ‘Subtypes’.

– Subtypes: (1) inside a formal A1-phase; (2) outside any

formal A1-phase.

For simplicity’s sake we defined the formal events in the

same way for all the NREM stages. For the same reason we

did not include duration limits in the formal definitions.

However, only formal A-phases lasting at least 2 s and

formal arousals lasting at least 3 s were considered for the

statistical comparisons with visually recognized events.

2.5. Statistical analyses of the results

First, a statistical analysis was made to check that

formal events met the same fundamental properties of

the correspondent visual events. These properties are

well-known. For instance, arousals are much less numerous

during Stage 4 than during Stage 2. The data set for the

statistical analysis consisted of the frequencies (number of

events per minute) of the various events for each subject and

for each NREM stage. The mean values in the different

stages were compared, applying the non parametric one-

tailed Wilcoxon’s t-test and requiring P!0.01 as the

statistical significance level.

An interesting result provided by the visual analysis of

CAP has been a different distribution of the ratio of the A1-

phases to all the A-phases in Stage-2 epochs preceding

Stage 3 with respect to Stage-2 epochs preceding REM

sleep. In order to verify whether this result was also valid

for formal events, the frequencies of formal A1-phases

and of formal A-phases with arousals were calculated over

the last 10 min of Stage 2 preceding Stage 3 and over the

last 10 min of Stage 2 preceding REM sleep in the first

sleep cycle for each subject. A one-tailed Wilcoxon’s t-

test was applied to the values so obtained; a significance

level P!0.01 was required.

A second statistical analysis was carried out to measure

the agreement between the formal events and the corre-

sponding visual events. A 4!4 matrix was thus constructed

considering two scoring methods, the visual and the

automatic, and four possibilities:

1. formal arousals (or visually recognized arousals);

2. formal A1-phases (or the correspondent visually recog-

nized events);

3. formal A-phases with arousals (or the correspondent

visually recognized events);

4. no events (according either to automatic criteria or to

visual criteria).

Table 1

Number of detected formal events per minute and standard deviations for the 10 subjects during the various NREM sleep stages

Stage 1 (15.8G2.7 min) Stage 2 (190.6G18.7 min) Stage 3 (37.0G7.4 min) Stage 4 (59.8G6.9 min)

Formal theta arousals 0.17G0.04 0.01G0.01 0.05G0.04 0.01G0.01

Formal alpha arousals 0.48G0.07 0.10G0.02 0.14G0.06 0.02G0.01

Formal beta arousals 0.09G0.06 0.01G0.01 0.02G0.02 0.01G0.01

Formal A1-phases 0.29G0.10 0.92G0.13 0.59G0.17 0.28G0.08

Formal theta A-phases 0.10G0.07 0.22G0.03 0.04G0.04 0.09G0.04

Formal alpha A-phases 0.46G0.04 0.26G0.04 0.15G0.04 0.01G0.01

Formal beta A-phases 0.01G0.01 0.14G0.04 0.04G0.03 0.01G0.01

Formal spindle bursts

(lasting at least 2.5 s)

0.61G0.14 1.05G0.19 0.56G0.07 0.43G0.12
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From this 4!4 matrix two parameters were then

computed:

† Correctness, given by the ratio of the number of events

for which there was agreement (the sum of the diagonal

elements), to the total number of events;

† Cohen’s kappa, a statistical parameter able to provide a

measure of the agreement between different scorers

(or different scoring methods), statistically discarding

the cases in which the agreement is due to chance.

Considering that in Tables 1–4 only recognized events

were reported, and all the instants, for which there was

agreement between visual and automatic analysis in not

recognizing any event, were not considered, even not very

high values of kappa should be viewed as corresponding to

good levels of agreement.

It was then checked that the significance level of Cohen’s

kappa with respect to agreement by chance was extremely

high; the criterion P!0.0001 was applied.

A comparison between different values of the three

thresholds was then performed to check that the chosen

values were appropriate. This check was simply performed,

changing the values of the thresholds one by one. The

choice criterion was the agreement between visual and

automatic analysis, measured by the parameter Correctness.

3. Results

3.1. Graphical representation of the descriptors

The graphical representation of the descriptors

during a recognized microstructure event evidenced

the properties of any considered epoch: its length, the

frequency bands involved, the level of this involvement,

and the possible delays between the peaks of different

band descriptors.

Four examples are shown in the figures. The full time

scale is the same, 20 s, for all the figures; the recognized

epochs, whose beginning and end are indicated by vertical

cursors, are completely included in the 20 s intervals. The

figures show, respectively:

(1) a formal A1-phase during Stage 4 lasting 14 s,

characterized by a different behavior of the slower

delta descriptor with respect to the faster delta

descriptor (Fig. 1);

(2) a formal A-phase with arousal during Stage 2 lasting

17.5 s, presenting a two-modal behavior of the delta

descriptor (Fig. 2);

(3) an arousal during Stage 1 lasting 5.5 s, characterized

by amplitude increases in the alpha and beta bands

(Fig. 3);

(4) a formal spindle burst during Stage 2 lasting 4 s,

preceded by a spindle burst recognized by the automatic

method as a separate event (Fig. 4).

Table 3

Comparison of the frequency (number of events per minute) of the two

kinds of formal A-phases in Stage 2 preceding REM sleep with respect to

Stage 2 preceding slow wave sleep

Stage 2 before Stage 3 Stage 2 before REM

sleep

Formal A1-phases 1.15G0.18 0.91G0.15

Formal A-phases with

arousals

0.49G0.11 1.10G0.15

The mean ratio between the two frequencies was significantly different in

the two conditions, according to the Wilcoxon’s t-test with P!0.01.

Table 4

The 4!4 agreement matrix for the microstructure events recognized either

by visual analysis or by automatic analysis or by both

Formal

arousals

Formal

A1-phases

Formal

A-phases

with arousals

No formal

event

ASDA arousals 371 27 23 38

CAP

A1-phases

11 1735 182 184

CAP A2- and

A3-phases

24 229 981 75

No visual

recognition

40 169 98 0 (not

considered)

Each cell reports the number of events for which the automatic analysis

provided the assignment indicated in the column title and the visual

analysis the assignment indicated in the row title. Formal A-phases lasting

less than 2 s and formal arousals lasting less than 3 s were not considered.

The cases for which there was agreement between the automatic

recognition of a formally defined event and the visual recognition of the

correspondent visually defined event are those in the diagonal cells. The

zero in the last cell indicates that only recognized events were considered.

Table 2

Comparison of the mean frequency of the different formal events in the various sleep stages

S1 versus S2 S1 versus S3 S1 versus S4 S2 versus S3 S2 versus S4 S3 versus S4

Formal arousals More frequent in

Stage 1

More frequent in

Stage 1

More frequent in

Stage 1

More frequent in

Stage 2

More frequent in

Stage 3

Formal A1-phases More frequent in

Stage 2

More frequent in

Stage 2

More frequent in

Stage 2

More frequent in

Stage 3

Formal A-phases

with arousals

More frequent in

Stage 1

More frequent in

Stage 1

More frequent in

Stage 2

More frequent in

Stage 2

More frequent in

Stage 3

Empty cells indicate no statistical significance. Filled cells indicate statistical significance according to the Wilcoxon’s t-test with P!0.01.
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3.2. Recognition of microstructure events: summary

of the results obtained

Table 1 provides the mean values of the number of

detected events per minute in the different NREM sleep

stages.

Table 2 shows that the mean number of the various

detected events per minute generally varied significantly

according to the sleep stage. For this analysis, the

various formal arousals and formal A-phases with

arousals were put together. The statistically significant

variations were in agreement with the variations

reported in the literature [30] for the corresponding

visual events.

The comparison of the distribution of the A-phases

in the 10-min Stage 2 preceding Stage 3 and REM

sleep, respectively, provided the results indicated in

Table 3, which confirmed the differences in the

distribution of the different classes of visually recog-

nized A-phases.

3.3. Measure of the agreement between the automatic

recognition of formally defined events and the visual

recognition of visually defined events

The study of the agreement between automatic and visual

recognition was carried on the agreement matrix rep-

resented in Table 4.

If we only consider the recognition of the CAP A-phases

without taking into account the discrimination between

different classes, we obtain from Table 4 the following:

cases of agreement: 3127; false positives: 317; and false

negatives: 294. The value of Correctness for the A-phases

recognition was therefore similar to the agreement percen-

tage between visual scorers. In fact, CorrectnessZ

3127/(3127C317C294)Z83.5%.

A statistical analysis of Table 4 was then carried out

including the assignments to the different classes. The

following results were obtained:

CorrectnessZ3087/4187Z73.7%; Cohen’s kappaZ

0.58; kappa’s sigmaZ0.02; P!0.0001.

Fig. 1. A formal A1-phase during Stage 4. The top curve represents the F4-C4 trace during a 20 s interval including the A1-phase, the beginning and end of

which (as identified by the automatic procedure) are indicated by vertical cursors. The other curves show the descriptors, sampled every 0.5 s, for the following

frequency bands (from top to bottom: delta, lower delta, higher delta, theta, alpha, sigma and beta). The two horizontal lines in the descriptor graphs represent

the existence threshold and the length threshold, respectively. The time length of the phase, given by the time distance between the two vertical cursors, was

14 s. The individual characteristics of the A1-phase were as follows: gradual increase of the delta descriptor at the beginning, different behavior of the slower

delta component with respect to the faster delta component, very short beta amplitude increase toward the end, high values of the sigma descriptor in the middle

of the phase.
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This level of agreement was close to the agreement

between different visual scorers. Moreover, in the 53% of

the cases of disagreement between visual and automatic

analysis, the visual scorer, when asked to comment on the

disagreement, answered that, according to a further reflec-

tion based on the criteria for visual analysis, it was better to

change the visual assignment.

The value of Correctness for arousals (considering those

within an A-phase together with those outside any A-phase)

was lower, equal to 69%.

We checked qualitatively that the agreement between

the automatic recognition of formal spindle bursts lasting

at least 2.5 s and the visual recognition of spindle activity

lasting at least 2.5 s was good. A quantitative analysis

considering five subjects was carried out. The number of

events for which there was agreement was 2185; the

number of events recognized only by the automatic

procedure was 379, and the number of those recognized

only visually was 361. The Correctness was 75%. With

regard to shorter spindle activity, we limited ourselves to

check qualitatively that a reduction from 2.0 to 0.5 s of

the interval for the amplitude average implied a fairly

high level of agreement in the recognition of spindles of

any time length.

4. Discussion and conclusion

The method described provides a general unified

automatic and quantitative approach to the study of sleep

microstructure. It is characterized by extreme simplicity

under various aspects. A single EEG trace was processed;

we chose the F4-C4 trace, but similar results could be

obtained analyzing the other traces. Two basic patterns,

arousals and CAP phase A subtypes, were included in the

definition of formal events. The ranges of the various

frequency bands were very similar to those implied in the

visual analysis of the EEG traces. The definitions of

the descriptors were mathematically elementary. The

threshold levels were given by round numbers (0 and 1)

for the length threshold and the existence threshold,

respectively; it was necessary, however, to introduce a

third threshold, in order to apply the exclusion principle.

This threshold was equal to 0.75.

Although we found that the application of the method to

other traces altered the results very slightly, we feel that it

will be very important to study the topographical changes

and their meaning. It is interesting to observe that

preliminary results obtained applying this method to the

recognition of transient events during REM sleep show that,

Fig. 2. A formal A-phase with arousal during Stage 2 lasting 17.5 s. The eight curves have the same meaning as in Fig. 1. The individual characteristics of the

A-phase were as follows: two-modal behavior of the delta descriptor with a 5 s shift between the peaks; occurrence of a beta arousal whose peak was delayed

2 s with respect to the second delta peak; waveform presenting a remarkable delta component at the beginning.
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Fig. 3. An arousal during Stage 1 lasting 5.5 s characterized by amplitude increases in the alpha and beta bands. The eight curves have the same meaning as in

the preceding figures. The alpha and beta descriptors increased almost simultaneously, while the decrease occurred earlier for the beta descriptor.

Fig. 4. A formal spindle burst during Stage 2 lasting 4 s. The eight curves have the samemeaning as in the preceding figures. This spindle burst was preceded by

another spindle burst which was separately recognized by the automatic method. For both events, no descriptor other than the sigma descriptor overcame the

existence threshold.
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unlike NREM sleep, there are fairly numerous events the

recognition of which depends on the trace analyzed.

The visual impact of the descriptors in the time domain

was an important issue. After an initial application of the

Fourier Transform in order to separate the various frequency

components of the signal, the whole analysis was carried out

in the time domain.

In most of the cases of discrepancy between automatic

and visual analysis, both the following facts occurred: (a)

the visual operator was not sure of his choice; (b) values

of the descriptors not far from the thresholds were

determinant for the result provided by the automatic

method. In other words, the uncertainty was indicated in

the data, much more than in the visual or automatic

procedure. This uncertainty, which often concerned the

discrimination between the A1-phases and the A2-phases,

accounts for the lower value found for Correctness if only

arousals are considered.

Future research should improve the methods in three

directions: in increasing the conceptual explicative power of

the model, in increasing the agreement with visual analysis,

and in increasing the range of applications. We feel that

a full exploitation of the flexibility of the method could

improve it. For instance, a selective reduction of the average

interval for the higher frequency bands can lead to the

recognition of very short transients.

In conclusion, the rules for macrostructure analysis are

pointed out in the Rechtschaffen and Kales’ system, which

is, however, based on giving a single definition (stage) to

a relatively large homogeneous epoch of 20 or 30 s. In

contrast, the microstructure events are complex, stand

against a tonic background, last a few seconds and still

present several changing patterns. In the lapse of a few

seconds, EEG features may shift rapidly from slow, high-

voltage waves to fast, low-amplitude rhythms involving

completely different cerebral areas and biochemical path-

ways. This can be skipped or difficult to follow-up only

by eye inspection. Naturally, automatic detection should

be in tune with the visual data. However, once the rules

for visual analysis of microstructure have been established

[31,32], the time is ripe to exploit all the available

automatic analysis systems to gain insight into the

knowledge of sleep regulation which cannot be defined

by visual detection. The methodology proposed in this

paper can be a new simple tool for the achievement of

innovative information.
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