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Abstract

Several pieces of evidence suggest that a dopaminergic dysfunction might play a key role in the pathophysiology of restless legs syndrome

(RLS), including the therapeutic effects of dopaminergic drugs and the results of several positron emission tomography and single photon

emission computed tomography studies. However, RLS symptoms display a distinct circadian pattern, with an increase of both sensorial and

motor symptoms in the evening and at night. Although the latter could also be caused by homeostatic mechanisms such as a linkage to the

previous amount of wakefulness, several studies performed over the last few years under semiconstant, routine conditions have suggested the

existence of a ‘true’ circadian mechanism modulating the severity of RLS symptoms across the day–night cycle. Thus, both periodic leg

movements of sleep and restlessness show a maximal severity in timely coincidence with the falling phase of the core temperature circadian

cycle. The present article reviews the evidence showing circadian oscillation of dopaminergic function and postulates that the amplitude of

circadian rhythm of dopaminergic function is increased in RLS, with a hypofunction at night. q 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The restless legs syndrome (RLS) is a movement disorder

that affects up to 5–10% of the general population [1,2].

According to a consensus established by the International

Restless Legs Study Group [3], the main clinical features of

RLS are: (a) a desire to move the limbs, usually associated

with dysesthesias/paresthesias in the lower extremities; (b)

motor restlessness; (c) a partial, temporary relief of the

former by activity; and (d) a worsening of symptoms in

the evening or at night. RLS may start at any age, even

during childhood [4,5], although it is usually seen in adults

[6]. The clinical course usually fluctuates with time, but

tends to progress with age [7,8].

RLS is a sensorimotor disorder [9]: in addition to sensor-

ial symptoms such as dysesthesias or an urge to move the

limbs, patients also experience motor symptoms such as

rhythmic or semirhythmic movements of the legs called

periodic leg movements during wakefulness (PLMW)

when the patient attempts to remain still [10]. While sleep-

ing, patients frequently demonstrate similar semirhythmic

leg movements that have been referred to as periodic leg

movements of sleep (PLMS) [11]. These are repetitive and

somewhat stereotyped limb movements that usually involve

the legs with extension of the great toe in combination with

flexion of the ankle, knee, and, sometimes, the hip [7,12].

There is evidence to support a central role for the dopa-

minergic system in the pathophysiology of RLS [13]. The

strongest support is based on the therapeutic effect of dopa-

minergic drugs [14,15] as well as on the increase of symp-

toms caused by dopamine receptor blockers [16]. In

addition, both single photon emission computed tomogra-

phy (SPECT) and positron emission tomography (PET)

studies have detected decreases in type-2 dopamine (D2)

receptors in the basal ganglia [17–19]. However, the

reported abnormalities have been mild at best, and have

even been absent in some studies [20]. In addition to the

fact that sleep loss or aging might alternatively explain the

findings of the SPECT and PET studies, the mechanism

involved in this mild dopaminergic dysfunction also

seems unclear: the SPECT data could result from a mild

loss of D2 receptor density, a decrease in dopamine receptor

sensitivity, or an increase in synaptic dopamine.

Cerebrospinal fluid dopamine metabolites do not differ

between patients and controls [21]. Moreover, analysis of

genetic association has not shown any linkage between

dopaminergic transmission and RLS [22]. However, most

of the previous studies have been performed in the morning

or at times at which patients were not symptomatic.

Hitherto, no animal model exists for RLS. However,

bilateral pharmacologic lesions in A11 dopaminergic
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neurons of the rat brain produced by microinjections of 6-

hydroxydopamine caused an increase in motor activity in

these animals that resembled periodic leg movements [23].

Although the involvement of the dopaminergic system in

the pathophysiology of RLS seems undisputed, it does not

explain by itself the fact that symptoms occur in a time-

related fashion: that is, they start or are exacerbated in the

evening and at night. Thus, an independent ‘circadian

factor’ affecting or modulating dopaminergic activity has

been suggested.

2. Circadian factors

As previously stated, the clinical diagnosis of RLS

requires the presence of an exacerbation of symptoms at

night, a factor that suggests a circadian oscillation.

However, it could be argued that both motor and sensory

symptoms are driven by a homeostatic rather than by a

circadian mechanism. In such a case, they would be asso-

ciated either to the amount of wakefulness or to some other

factor indirectly related to it.

Anecdotal reports of RLS patients on shift-work or cross-

ing several transmeridian time zones show that symptoms of

RLS are related to circadian time. Shift workers experience

RLS symptoms at the usual time of day when entering the

night shift, and gradually phase-delay the time of onset of

symptoms until coincidence with the immediate time before

sleep is reached. Similarly, westward trans-meridian flights

lead to a phase-delay of RLS symptoms, while eastward

crossing of time zones causes an advance of phase.

Nevertheless, the main evidence for the involvement of a

circadian mechanism in RLS comes from two studies that

specifically addressed the question of a ‘true’ circadian

modulation of symptoms. In these studies, the circadian

rhythm of body temperature as well as the 24-h pattern of

sensorial and motor symptoms were investigated in RLS

patients that underwent sleep deprivation [24,25]. The

monitoring conditions resembled in some aspects the meth-

ods employed in a constant routine paradigm [26]. Patients

were asked to keep their activity at a low, constant level and

at periodic time intervals underwent a suggested immobili-

zation test (SIT) [27]. However, while in one of the studies

the patients were asked to remain quiet and to report their

subjective sensations every 15–20 min on a ten-point scale

[25], in the second study the SIT was modified to allow

subjects to make voluntary movements when they experi-

enced RLS symptoms (modified SIT or mSIT) [24]. Two

conclusions were reached from these studies: (1) the circa-

dian rhythm of body temperature, a marker of circadian

phase, does not differ between patients with RLS and retro-

spectively compared healthy subjects; and (2) the circadian

oscillation of motor and sensorial symptoms can be

observed even under conditions of sleep deprivation.

Thus, waking leg discomfort, motor restlessness, and

PLMW induced by the SIT show a peak in the early portion

of the sleep period (23:00–04:00 h) and a nadir during the

early portion of the wake period (09:00–14:00 h). The

period of maximal frequency of PLMW coincided with

the falling portion of the core temperature cycle. Similarly,

PLMS during the nights of sleep peaked in the same time

period. Finally, sleep deprivation exacerbates the severity of

RLS symptoms, suggesting the existence of a ‘homeostatic

drive’ as an additional factor modulating RLS symptoms.

Taken together, these studies suggest that RLS severity is

determined not merely by activity, but by a circadian or a

time-of-day–related factor. For a given level of decreased

activity, RLS was most intense late in the circadian period

(on the falling phase of the core temperature cycle whose

nadir is circadian time zero) and least intense several hours

later, early in the following circadian period. This rhythm

was common to all aspects of RLS monitored, both subjec-

tive (patient assessed discomfort) and objective (monitoring

of movement or EMG activity) and suggests the existence of

a single generator for RLS.

Furthermore, the parallel course of PLMS and various

subjective RLS features confirmed the close relationship

between RLS and PLM. The circadian pattern of PLMS

could be secondary to the phasic influence from the RLS

generator and thus reflect the link between RLS and PLM.

Alternatively, it could also be caused by an independent

variation in the PLM generator. Interestingly, some studies

have suggested that patients with RLS show the clearest

pattern of early-night predominance of PLMS [28].

Although the normal circadian rhythm of temperature

makes a direct involvement of the central circadian pace-

maker in the pathogenesis of RLS unlikely, RLS could be

linked to some biological factor that varies with the normal

circadian rhythm. Proposed candidates include an altered

level of sensory processing [29], which manifests itself as

a decreased threshold for painful stimuli at night [30], or

other biochemical factors.

3. Circadian variation of dopaminergic activity

Both animal [31,32] and human studies [33,34] suggest

the existence of circadian variations in dopaminergic activ-

ity [35–38]. Human data show a distinct circadian variation,

with a pattern characterized by an increase in the morning

and a nadir in the late evening/night [39,40]. Furthermore,

circadian variation in the dopamine system (as in other

catecholamines) might influence melatonin secretion, and

thus affect sleep regulation (personal observation).

Alternatively, the circadian pattern might not be gener-

ated by the dopaminergic system itself, but by other factors

that indirectly modulate it. For example, tetrahydrobiopterin

(TH-biopterin), a cofactor of tryptophan and the dopamine-

synthesizing enzyme tyrosine hydroxylase [41], is

decreased in Segawa’s disease [42], another neurological

disorder with a distinct circadian pattern of severity. The

dopaminergic deficiencies that occur in Segawa’s disease
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are caused by a deficiency in GTP-cyclohydrolase, the rate-

limiting enzyme for the production of TH-biopterin [43,44].

TH-biopterin brain levels show a diurnal pattern that paral-

lels dopamine production [32,45]. To date, cerebrospinal

fluid (CSF) levels of TH-biopterins have been found to be

normal in RLS when collected in the morning [21], but no

similar samples have been taken while patients were symp-

tomatic at night. It is thus possible that both RLS and Sega-

wa’s disease share a common mechanism of disease

affecting the production of TH-biopterins, resulting in a

distinct dopaminergic deficiency at night.

Iron, another cofactor of tyrosine-hydroxylase [41], is

low in the CSF of RLS patients [46]. Serum iron shows a

marked circadian variation with a low point in the evening

and early night [47], a time that coincides with maximal

severity of symptoms. Thus, circadian variation in serum

iron parallels the circadian variation of CSF dopamine.

4. Neuroendocrine challenges

Neuroendocrine responses to dopaminergic drugs provide

an additional perspective from which to investigate the

function of the dopamine system. For example, the

responses of prolactin (PRL) and growth hormone (GH) to

various dopaminergic drugs have been used in the past to

investigate the sensitivity of dopaminergic receptors to

various disorders, particularly Parkinson’s disease and

multiple system atrophy [48–51]. Under normal circum-

stances, the administration of dopaminergic drugs exerts

inhibitory effects on the release of PRL [52,53] and

enhances the release of GH [54,55]. In a recent pilot

study, nighttime administration of 200 mg of levodopa

caused an increased release of GH and a reduced secretion

of PRL when administered at night compared to morning

administration or controls [56,57]. These preliminary results

suggest the presence of hypersensitive postsynaptic dopa-

mine receptors at night. Furthermore, a significant correla-

tion could be seen between the PLMS-index (number of

PLMS per hour of sleep) and the degree of inhibition of

PRL. Taken together, the findings suggest an increase in

the amplitude of the circadian variation of dopaminergic

function in RLS compared to healthy controls (see Fig. 1).

In summary, circadian abnormalities represent an essen-

tial aspect of the pathophysiology of RLS. Although the

function of the central circadian pacemaker does not seem

to be abnormal, the severity of symptoms might be indir-

ectly modulated by some factor undergoing circadian varia-

tion. Several substances with marked circadian fluctuation

have been studied in this regard, although most investiga-

tions for both plasma and CSF biochemical abnormalities

have not included an assessment of circadian function.
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