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Study Objectives: Obstructive sleep apnea (OSA) is common in commercial motor vehicle operators (CMVOs); however, polysomnography (PSG), the 
gold-standard diagnostic test, is expensive and inconvenient for screening. OSA is associated with changes in heart rate and voltage on electrocardiography 
(EKG). We evaluated the utility of EKG parameters in identifying CMVOs at greater risk for sleepiness-related crashes (apnea-hypopnea index 
[AHI] ≥ 30 events/h).
Methods: In this prospective study of CMVOs, we performed EKGs with concurrent PSG, and calculated the respiratory power index (RPI) on EKG, a 
surrogate for AHI calculated from PSG. We evaluated the utility of two-stage predictive models using simple clinical measures (age, body mass index [BMI], 
neck circumference, Epworth Sleepiness Scale score, and the Multi-Variable Apnea Prediction [MVAP] score) in the first stage, followed by RPI in a subset 
as the second-stage. We assessed area under the receiver operating characteristic curve (AUC), sensitivity, and negative posttest probability (NPTP) for this 
two-stage approach and for RPI alone.
Results: The best-performing model used the MVAP, which combines BMI, age, and sex with three OSA symptoms, in the first stage, followed by RPI in 
the second. The model yielded an estimated (95% confidence interval) AUC of 0.883 (0.767–0.924), sensitivity of 0.917 (0.706–0.962), and NPTP of 0.034 
(0.015–0.133). Predictive characteristics were similar using a model with only BMI as the first-stage screen.
Conclusions: A two-stage model that combines BMI or the MVAP score in the first stage, with EKG in the second, had robust discriminatory power to identify 
severe OSA in CMVOs.
Keywords: commercial motor vehicle drivers, electrocardiography, EKG, obstructive sleep apnea, occupational driving, OSA, respiratory power index, 
screening, surrogate measure for apnea hypopnea index, truck drivers
Citation: Lyons MM, Kraemer JF, Dhingra R, Keenan BT, Wessel N, Glos M, Penzel T, Gurubhagavatula I. Screening for obstructive sleep apnea in 
commercial drivers using EKG-derived respiratory power index. J Clin Sleep Med. 2019;15(1):23–32.

INTRODUCTION

Characterized by repetitive breathing pauses during sleep, ob-
structive sleep apnea (OSA) occurs due to a collapse of the 
pharyngeal muscles, leading to cessation (apnea) or reduc-
tion (hypopnea) in airflow. These events are terminated by a 
sympathetic burst, which leads to a brief arousal from sleep. 
The resultant sleep fragmentation, intermittent hypoxia, and 
sympathetic activation have been linked with a number of 
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downstream consequences. One symptom of OSA is daytime 
sleepiness, which is relevant for commercial motor vehicle op-
erators (CMVOs) because of its association with sleepiness-
related crashes.

Indeed, ~30% of commercial vehicle accidents are due 
to sleepiness.1–3 OSA is common in CMVOs, with 28% to 
60% having the disorder.4,5 This is because CMVOs tend to 
be obese, male, and middle-aged, the three most common 
risk factors for OSA.6–8 Despite this risk, in most CMVOs 

BRIEF SUMMARY
Current Knowledge/Study Rationale: In commercial motor vehicle operators (CMVOs), obstructive sleep apnea (OSA) is often undiagnosed 
because testing using the gold-standard measure, in-laboratory polysomnography, is expensive, not easily accessible, and time consuming for long-
haul drivers who are regularly on the road. However, 28% to 60% of CMVOs have been found to have OSA and ~30% of known CMVO accidents have 
been related to OSA.
Study Impact: We describe an approach that shows promise in identifying CMVOs who have severe OSA—who are likely to be at risk for a 
sleepiness-related crash—by using the spectral qualities of electrocardiography with portable diagnostic ability and without requiring overnight in-
laboratory polysomnography. Future studies should include larger cohorts of patients.
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OSA is undiagnosed and, therefore, no treatment is imple-
mented.5,8–10 The gold-standard test, polysomnography 
(PSG)11 is inappropriate for systematic screening because 
of its high expense, complexity, and relative inaccessibility, 
particularly among uninsured patients. Moreover, PSG re-
quires the patient to sleep in a laboratory, which poses incon-
venience to long-haul drivers. Therefore, simpler screening 
tools deserve investigation.

Symptom reporting has been shown to be unreliable in this 
group,9,10,12 and so may not be effective for screening. Objective 
tools include body mass index (BMI), age, and sex. These can 
be used alone, or in a two-stage fashion, with the second stage 
test being an ambulatory diagnostic recording that can be done 
in the CMVO’s home or berth of the truck. These tools have 
included recordings of airflow, respiratory effort, and oxyhe-
moglobin saturation.

An alternative to these ambulatory tests that has not 
been evaluated before is heart rate variability (HRV) using 
electrocardiography (EKG), which can be summarized us-
ing time- or frequency-based metrics.13 Respiratory activity 
can affect EKG-derived variables. For example, respiratory 
movement can induce rotation in the electrical axis,14 as well 
as sinus arrhythmia.15 Additionally, OSA has been associ-
ated with cyclic heart rate variability,16 with patients expe-
riencing a relative bradycardia during the apnea/hypopnea 
event, followed by a relative tachycardia at event termina-
tion, during the sympathetic burst. In addition, the effort 
to inhale against a closed glottis can lead to fluctuations in 
EKG voltage, as the chest wall moves away from the heart, 
followed by an increase in voltage when breathing resumes 
and the chest wall returns to neutral position. These data 
may be combined into a single metric that estimates the fre-
quency of apneas and hypopneas per hour of sleep, or apnea-
hypopnea index (AHI).

In the current study, we evaluated the utility of single-stage 
and two-stage risk prediction paradigms leveraging a three-
channel EKG in identifying OSA in a cohort of CMVOs, us-
ing the AHI derived from PSG as the gold standard. Given 
that studies have associated severity of OSA with increased 
risk for motor vehicle crashes,17 we focused our observations 
on CMVOs with severe OSA (s-OSA; AHI of ≥ 30 events/h).

METHODS

The Institutional Review Board of the University of 
Pennsylvania approved the protocol. All participants provided 
signed informed consent.

Participant Selection
We recruited holders of active commercial driver’s licenses 
through online advertisements from 2009–2011. Partici-
pants were required to reside within 40 miles from the Penn 
Sleep Center and be 18 to 65 years old. We excluded those 
using positive airway pressure or supplemental oxygen; 
those with nocturnal hypoxia because of any other illness; 
or medical or psychiatric conditions that prevented their 
ability to participate.

Confidentiality
Given that study data can affect employment, the National 
Institutes of Health granted a Certificate of Confidentiality,12 
enabling us to resist court-ordered subpoenas to release per-
sonal health information. We shared this information with all 
participants.

Demographics, Symptoms, Examination, PSG and 
Case Definition
We collected demographic data,12 and self-reported data in-
cluding medical history, apnea-related symptoms (snoring, 
choking/gasping, witnessed apneas), and daytime sleepiness 
(Epworth Sleepiness Scale [ESS]). Study personnel measured 
and recorded BMI, blood pressure, and neck circumference 
(NC). PSG tests were 14-channel studies conducted in the par-
ticipant’s home, as described previously,12 and included elec-
troencephalography (C3, C4, Oz), three-channel EKG, eye, 
chin, and pretibial electromyography, chest and abdominal 
plethysmography, nasal and oral airflow by nasal cannula, and 
oral thermistor and finger oximetry. Scoring was performed by 
registered PSG technologists, using standards defined by the 
American Academy of Sleep Medicine (AASM). Per AASM 
scoring guidelines, hypopneas were defined as a ≥ 30% drop 
in signal amplitude for at least a 10-second duration and also 
associated with a ≥ 4% oxygen desaturation from baseline.18,19 
Technologists set up and scored PSG tests while blinded to 
questionnaire data. We computed the AHI as the number of 
apneas plus hypopneas divided by hours of sleep time. s-OSA, 
our main case-definition of interest, was defined as an AHI 
of ≥ 30 events/h based on PSG.

Determining EKG-Derived Respiratory Power Index: 
A Surrogate for Apnea-Hypopnea Index
As briefly described previously,20 we integrated signals based 
on their estimated spectral power densities. We used the in-
stantaneous respiratory rate to exclude noise in bands not rel-
evant to respiration. We used the resulting integrated spectrum 
to estimate respiratory power, and from this, we calculated the 
respiratory power index (RPI), an estimate for the AHI.

To generate the initial estimations of the respiratory signal, 
we used prior algorithms, such as: amplitude of the R-Peak, 
P-Wave, and T-Wave, as well as the area of the QRS complex 
and the change in the heart rate, or respiratory sinus arrhyth-
mia (RSA). We transformed each signal so that all signals show 
an identical average power. After averaging the calculated 
spectral power densities, the common respiratory component 
became dominant. Next, to remove the nonrespiratory parts 
of the spectrogram, we estimated the instantaneous respira-
tory frequency on a spectrum that is longitudinally rescaled on 
the frequency axis. This allowed us to filter out nonrespiratory 
components, and select the respiratory component. Summing 
the power density of this component over each time point pro-
vided an estimation of the respiratory power. We applied an 
adaptive20,21 filtering procedure to exclude artifacts and values 
related to ectopy.

For further details on this derivation, see Figure 1. The 
variables used in the EKG for calculating13 the HRV are sum-
marized in Table 1.D
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Respiratory Power Index
The method used to calculate the RPI has so far only been 
described preliminarily as a conference contribution; a de-
tailed study will follow.20 Each of the metrics in Table 1 was 
calculated as a weighted average over all EKG segments, the 
weights being the length of the EKG segment. Multiple inde-
pendent embeddings of the respiratory activity on the EKG 
were used to calculate the RPI, which has been used as a sur-
rogate marker for AHI. These embeddings have the physical 
and rotational properties of the electrical axis, due to respira-
tory movement as well as neural sources in the case of RSA. 
As outlined earlier, the RSA depends on the breathing rate. 
Information from all embeddings was then integrated and con-
trolled for noise, which is often a reason for infrequent sam-
pling. The combination of spectral power densities for these 
signals along with instantaneous respiratory rate allowed for 
exclusion of noise not relevant to respiration. The integrated 
spectrum was used to estimate respiratory power from which 
RPI could be computed. Further information on extracting RPI 
and distinguishing RPI signals from artifact is presented in the 
supplemental material.

Validation of this technique was performed using an in-
dependent PSG data set.22 This information is summarized 
in the supplemental material. For determination of AHI ≥ 30 
events/h, the coefficient of determination was calculated as, 
R2 = 0.90 with P < 10−10. Using a threshold of RPI > 12.23 
for the determination of OSA (AHI ≥ 30 events/h) in this da-
taset, the RPI would show sensitivity of 1 and specificity of 
0.75. Similarly, for determination of AHI > 15 events/h, the 
coefficient of determination was calculated as, R2 = 0.74. Us-
ing a threshold of 10 for the determination of OSA (AHI > 15 
events/h) in this dataset, the RPI would show sensitivity of 0.93 
and specificity of 0.75.

Computation of Risk
Single-Stage Strategies to Determine Risk
We first determined risk scores for single-stage models. These 
models included assessments of BMI, age, ESS, NC, and all 13 
aforementioned EKG-derived metrics (Table 1). In addition, 
we assessed the performance of a previously derived Multi-
Variable Apnea Prediction (MVAP) score23 which combines 
BMI, age, sex, and the average responses (ranging from 0–4) 
on three specific OSA-symptom frequency questions: (1) snort-
ing or gasping; (2) loud snoring; and (3) breathing stops, chok-
ing, or struggling for breath. In addition to the overall MVAP 
score, we examined the predictive ability of the symptom score 
average (Index 1) alone.

Two-Stage Strategies to Determine Risk
We employed a two-stage risk prediction strategy, as described 
previously.8,24,25

We categorized participants into high, intermediate, or low 
probability groups for risk of s-OSA based on first-stage risk 
scores (BMI, age, NC, ESS, MVAP Index 1, and MVAP). Us-
ing a previously described, iterative, optimization method, 
we chose an upper-bound value of each risk score to separate 
participants who could be at high risk for s-OSA from those 

at intermediate risk, and a lower-bound value to separate in-
termediate risk from low-risk participants.26 We predicted that 
participants with a risk score that was greater than the upper-
bound cutoff point would have s-OSA, whereas participants 
with a risk score of less than the lower-bound cutoff point 
would be predicted not to have s-OSA. In our model, CMVOs 

Figure 1—Exemplary illustration of the methods behind 
the electrocardiographically derived respiratory power 
index (RPI).

The nighttime electrocardiograph recordings are preprocessed, including 
detection of fiduciary points and an estimation of signal-to-noise ratio 
(SNR), and are cut into segments of limited length (4–10 minutes) 
and high SNR (A). Segments of insufficient quality are discarded. 
Multiple embeddings of respiration into the ECG are used to derive 
electrocardiographically derived respiration (EDR) signals based on, e.g., 
the amplitudes of the peaks of the r-, p-, and t-wave (B), the respiratory 
sinus arrhythmia (RSA) (D). The spectrograms calculated from these 
signals (C,E) are normalized and averaged to amplify the common, ie, 
respiration based, component. In this case the RSA is not dominant as 
a source of modulation of the heart rate variability and shows mostly 
uncorrelated components that are reduced in the averaging process. 
The averaged spectrum is then analyzed to derive an estimate for the 
instantaneous respiratory frequency and masked to further reduce 
nonrespiration-related power in the spectrum (F). The power at each 
time-step is then calculated together with two levels used in the selection 
of events (G). The green line is the maximum level that determines the 
extent of an event if it lasts longer than a minimum amount of time and 
falls below the red level at least once. Time spans that indicate an event 
are underlaid blue on all time series. The amount of detected events, in 
relation to the analyzed time, is the RPI.
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falling between these ranges would be expected to undergo the 
second-stage test (EKG), and have the RPI value compared 
against a threshold RPI. Those with RPI values at or above the 
RPI threshold would be deemed to be at high risk for s-OSA, 
and those whose values were below the threshold would be pre-
dicted not to have OSA.

Computation of Model Parameters
We computed predictive characteristics of our single- or two-
stage prediction models based on derived optimal model pa-
rameters. Single-stage models classified s-OSA or no s-OSA 
based on a single parameter, which was the optimal cutoff 
point for the variable being examined. The two-stage strate-
gies had three parameters: the upper and lower bound for the 
first-stage test, and the threshold value of RPI in the second 
stage. We defined the optimal parameter set for each model by 
using an iterative algorithm that minimized the sum of false 
positives and twice the false negatives (ie, missed cases). We 
weighted missed cases more heavily because of the potential 
risk of drowsiness-related crashes in this group. In the case that 
multiple cutoff points met our selection criteria, we chose as 
the optimal parameter set the one that which also maximized 
specificity. Our method has been detailed previously.24–26

We determined area under the receiver operating charac-
teristic curve (AUC) for single-stage models using continu-
ous cutoff points for each single-stage predictor. For two-stage 
models, we calculated the AUC using logistic regression mod-
els with s-OSA as an outcome. We utilized the optimal pa-
rameter set for each model to compute sensitivity, specificity, 
positive likelihood ratio (+LR), negative likelihood ratio (−LR), 
positive posttest probability (PPTP), and negative posttest 
probability (NPTP). To estimate the expected accuracy of our 
estimates, we calculated nonparametric confidence intervals 

(CI) based on 1,000 bootstrapped samples of the dataset. That 
is, we generated 1,000 random samples (chosen with replace-
ment) of equal size to the original population and obtained a 
distribution of 1,000 predictive characteristics; the nonpara-
metric 95% CI for each measure were calculated as the 2.5th to 
97.5th percentiles of these distributions.

General Statistical Methods
Unless otherwise noted, we summarized continuous variables 
using mean and standard deviation (SD) and categorical vari-
ables using frequency and percent. We used a natural log or 
square-root transformation, when appropriate and if needed 
for continuous variables to meet parametric modeling assump-
tions, and compared between s-OSA and non-s-OSA groups 
using t tests. Categorical variables were compared between 
groups using chi-square or Fisher exact tests.

RESULTS

Sample Characteristics
Of the 95 participants who met our inclusion criteria and had 
EKG data available, 89 (93.7%) were male. We present demo-
graphic data in Table 2. The mean (SD) BMI, age, NC, and 
systolic and diastolic blood pressure were: 34.2 (8.2) kg/m2, 
43 (8.5) years, 43 (3.9) cm, 133.2 (11.5) mmHg and 78.8 (14.6) 
mmHg, respectively. Most participants (70.5%) had obesity or 
were considered to have morbid obesity. These data are con-
sistent with studies in prior truck driver cohorts5,8,27 and with 
established OSA risk factors.28–30

Compared to individuals with AHI < 30 events/h, partici-
pants with s-OSA were older, more likely to have obesity, 
had larger NC, higher diastolic blood pressure, and worse 

Table 1—Description of variables used in electrocardiography.
Time-Domain Methods

Metric Definition
SDNN (milliseconds) Standard deviation of all NN intervals.
RMSSD (milliseconds) The square root of the mean squared differences of successive NN intervals.
SDANN (milliseconds) Standard deviation of the averages of NN intervals in all minute segments of the entire recording.
% NN interval differences < 10 millisecond The percentage of beat-to-beat interval differences that were less than 10 milliseconds.

Frequency-Domain Methods
Power-spectral density (PSD) analysis provides the basic information of how power (variance) distributes as a function of frequency. The methods used 
for determining heart rate variability:
Total power (ms2) The variance of all NN intervals.
High frequency (ms2 ) Power in the high frequency range (0.15–0.4 Hz).
Low frequency (ms2 ) Power in the low frequency range (0.04–0.15 Hz).
Very low frequency (ms2 ) Power in the very low frequency range (0.003–0.04 Hz).
Low frequency/high frequency (LF/HF) Ratio of LF to HF powers.

Symbolic Dynamics Method
Polvar10 The percentage of occurrence of sequences of beat-to-beat intervals that were less than 10 milliseconds. 
WSDVAR Symbolic dynamics; word sequence variance.
Wpsum02 Symbolic dynamics; symbol probability for symbols 0 and 2.

For more information, see Wessel N, Malberg H, Bauernschmitt R, Kurths J. Nonlinear methods of cardiovascular physics and their clinical applicability. 
Int J Bif Chaos. 2007;17:3325–3371. NN = normal to normal beat-to-beat interval.
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sleepiness (see Table 2). In this group, mean (SD) AHI was 
53.8 (19.2) events/h, compared to 14.5 (8.2) events/h in the non-
s-OSA group. Participants with s-OSA had a higher RPI than 
those without s-OSA (24.3 [13.1] versus 11.5 [4.9] events/h; 
P < .0001), supporting the strong association between the RPI 
and AHI from PSG.

Electrocardiogram Derived RPI Metrics Are Associated 
With Severe OSA
We observed statistically significant or suggestive associa-
tions between select EKG-derived metrics and severe OSA 
(see Table 3). Specifically, CMVOs with s-OSA had sig-
nificantly lower high frequency band to total power ratio 
(P = .0304) and average beat-to-beat interval (P = .017) com-
pared to individuals with AHI < 30 events/h. In addition, s-
OSA individuals had suggestively higher percentages of NN 
(normal to normal) beat-to-beat interval differences < 10 ms 
(P = .063) and occurrence of NN sequences < 10 ms (P = .070). 
As shown in Table 3, RPI was the most significantly associ-
ated metric with severe OSA; thus, this was chosen as our 

primary EKG-derived measure in our modeling strategies to 
identify s-OSA.

Single-Stage Strategy: RPI Is Associated 
With Severe OSA
The discriminatory power of all single-stage models is shown 
in Table 4 and Table S1 in the supplemental material, along 
with optimal cutoff points, AUC, sensitivity, specificity, +LR, 
−LR, PPTP, and NPTP. When examining the AUC statistic, the 
RPI was the best predictor of s-OSA, followed by the MVAP 
score. Specifically, RPI had an overall AUC of 0.872 (95% CI: 
0.791–0.942). The optimal cutoff point of RPI ≥ 12.23 yielded 
a high sensitivity of 88.5% (75.0% to 100.0%) and specificity 
of 63.8% (52.4% to 75.0%). The MVAP score was the second 
best performing model in terms of AUC (0.813 [0.702–0.910]) 
and showed similar sensitivity (87.5% [74.6% to 100%]) and 
specificity (63.6% [51.7% to 75.0%]) as the RPI, based on an 
optimal cutoff point of 0.616. The improved performance of 
both the RPI and MVAP when compared to other single-stage 
models (eg, BMI, age, ESS, NC, or MVAP Index 1) appears 

Table 2—Demographic characteristics of the sample, overall and stratified by AHI.
Characteristic Overall (n = 95) AHI < 30 (n = 69) AHI ≥ 30 (n = 26) P *

Age, years 43.8 ± 8.5 42.4 ± 8.7 47.3 ± 6.8 .0115
Male, % 93.7 92.8 96.2  > .999
BMI, kg/m2 34.2 ± 8.2 32.6 ± 7.7 38.3 ± 8.0 .0019

Normal (20 to < 25), % 9.5 13.0 0.0 .0228
Overweight (25 to < 30), % 20.0 23.2 11.5
Obese (30 to < 35), % 33.7 34.8 30.8
Morbid I (35 to < 40), % 20.0 18.8 23.1
Morbid II (≥ 40), % 16.8 10.1 34.6

Weight, lbs. 238.1 ± 59.0 229.6 ± 60.5 260.7 ± 49.2 .0214
Height, in. 70.0 ± 3.4 70.3 ± 3.3 69.4 ± 3.5 .2660
Neck circumference, cm 43.0 ± 3.9 42.4 ± 3.9 44.7 ± 3.6 .0119
Race, %

White 51.6 52.2 50.0 .8004
Black 43.2 43.5 42.3
Other 5.3 4.4 7.7

Systolic BP, mmHg 133.2 ± 11.5 132.4 ± 11.7 135.4 ± 10.9 .2486
Diastolic BP, mmHg 78.8 ± 14.6 76.6 ± 11.6 84.6 ± 19.7 .0589
Current smoker, % 29.5 27.5 34.6 .4998
Married, % 39.0 39.1 38.5 .9525
Bed partner, % 55.8 53.6 61.5 .4886
ESS score 6.5 ± 4.7 5.9 ± 4.0 8.2 ± 5.8 .0630
ESS > 10, % 11.6 8.7 19.2 .1659
ESS > 15, % 7.4 2.9 19.2 .0155
AHI, events/h 25.2 ± 21.4 14.5 ± 8.2 53.8 ± 19.2  < .0001

Control (< 5), % 10.5 14.5 0.0  < .0001
Mild (5 to < 15), % 30.5 42.0 0.0
Moderate (15 to < 30), % 31.6 43.5 0.0
Severe (≥ 30), % 27.4 0.0 100.0

RPI, events/h 15.0 ± 9.8 11.5 ± 4.9 24.3 ± 13.1  < .0001

* = P value from t test for continuous variables and chi-square of Fisher exact tests for categorical variables, comparing AHI groups. AHI = apnea-hypopnea 
index, BMI = body mass index, ESS = Epworth Sleepiness Scale, RPI = respiratory power index.
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to be driven by higher specificity, as several of these single-
stage models had higher sensitivity estimates, but lower AUC. 
When examining posttest probabilities, the RPI model showed 
a NPTP of 0.064 (0.00–0.146), suggesting only a 6.4% probabil-
ity of s-OSA if the screening test predicts an absence of OSA. 
However, the PPTP was 0.479 (0.333, 0.627), suggesting that 
slightly < 50% of individuals screening positive will have s-
OSA. This difference reflects the overweighting of missed cases 
when we chose our optimal cutoff point. Similarly, the MVAP 
showed an NPTP of 6.7% and a PPTP of 46.7% in our sample at 
the optimal cutoff point.

EKG-derived metrics other than RPI had relatively low 
AUCs (ranging from 0.511 to 0.668), indicating that they are 
less useful for predicting s-OSA (see Table S1).

Two-Stage Strategy: RPI Increases Discriminatory 
Power for Predicting Severe OSA When Used In 
Tandem With Established Risk Factors
Table 5 shows the discriminatory power of RPI when used in 
tandem with the six variables known for their established as-
sociation with OSA risk: BMI, age, NC, ESS, MVAP Index 1, 
and MVAP. Specifically, RPI was used as a second-stage screen 
among individuals predicted to have intermediate risk using 
the clinical measures as a first-stage screen.

We observed that using the two-stage strategy improved 
the discriminatory power of each clinical single-stage model 
in predicting s-OSA. The best model used MVAP in the first 
stage, followed by RPI (cutoff point of 16 events/h) for the 
group with intermediate values of MVAP (scores between 0.22 

Table 4—Predictive characteristics of single variable models with bootstrap confidence intervals.

Predictor
Cutoff 
Point

Estimate (Bootstrapped 95% CI)
AUC Sensitivity Specificity +LR −LR PPTP NPTP

BMI 27.91 0.723
(0.607, 0.834)

0.962
(0.875, 1.00)

0.261
(0.163, 0.366)

1.301
(1.122, 1.526)

0.147
(0.00, 0.544)

0.329
(0.228, 0.434)

0.053
(0.00, 0.176)

Age 37.45 0.662
(0.541, 0.770)

0.962
(0.864, 1.00)

0.261
(0.164, 0.365)

1.301
(1.110, 1.533)

0.147
(0.00, 0.544)

0.329
(0.229, 0.434)

0.053
(0.00, 0.176)

Neck 
circumference 42.00 0.669

(0.543, 0.785)
0.846

(0.692, 0.968)
0.464

(0.347, 0.582)
1.578

(1.201, 2.104)
0.332

(0.061, 0.701)
0.373

(0.259, 0.492)
0.111

(0.023, 0.231)

ESS 3.00 0.610
(0.489, 0.740)

0.923
(0.800, 1.00)

0.203
(0.110, 0.306)

1.158
(0.979, 1.364)

0.379
(0.00, 1.120)

0.304
(0.209, 0.406)

0.125
(0.00, 0.308)

MVAP Index 1 0.330 0.653
(0.522, 0.779)

0.917
(0.800, 1.00)

0.273
(0.169, 0.393)

1.260
(1.039, 1.551)

0.306
(0.00, 0.835)

0.314
(0.209, 0.431)

0.100
(0.00, 0.255)

MVAP 0.616 0.813
(0.702, 0.910)

0.875
(0.746, 1.00)

0.636
(0.517, 0.750)

2.406
(1.719, 3.607)

0.196
(0.00, 0.435)

0.467
(0.325, 0.615)

0.067
(0.00, 0.143)

RPI 12.23 0.872
(0.791, 0.942)

0.885
(0.750, 1.00)

0.638
(0.524, 0.750)

2.442
(1.805, 3.632)

0.181
(0.00, 0.419)

0.479
(0.333, 0.627)

0.064
(0.00, 0.146)

−LR = negative likelihood ratio, +LR = positive likelihood ratio, AUC = area under the curve, BMI = body mass index, CI = confidence interval, ESS = Epworth 
Sleepiness Scale, MVAP = Multi-Variable Apnea Prediction, MVAP Index 1 = Multi-Variable Apnea Prediction Index, NPTP = negative posttest probability, 
PPTP = positive posttest probability, RPI = respiratory power index.

Table 3—Summary statistics for electrocardiogram-derived respiration and heart rate variability characteristics.
Characteristic Overall (n = 95) AHI < 30 (n = 69) AHI ≥ 30 (n = 26) P *

Respiratory power index 15.0 ± 9.8 11.5 ± 4.9 24.3 ± 13.2  < .0001
Low noise segments 36.9 ± 10.5 37.3 ± 10.4 35.8 ± 11.0 .5254
Total power 242.8 ± 245.0 226.4 ± 204.4 286.2 ± 330.8 .7498 †
High frequency band : total power 0.17 ± 0.08 0.18 ± 0.09 0.15 ± 0.06 .0304
Low frequency band : total power 0.34 ± 0.07 0.34 ± 0.07 0.35 ± 0.07 .3971
Very low frequency band : total power 0.48 ± 0.08 0.48 ± 0.09 0.50 ± 0.08 .2568
Low frequency : high frequency 4.40 ± 3.49 4.09 ± 3.09 5.25 ± 4.33 .1020 †
Average beat-to-beat intervals 890.1 ± 139.4 911.0 ± 142.6 834.8 ± 115.7 .0168
SDNN 53.5 ± 23.8 53.3 ± 22.1 53.9 ± 28.3 .8117 †
RMSSD 35.1 ± 22.1 36.1 ± 22.0 32.4 ± 22.4 .2220 †
% NN interval differences < 10 ms 0.34 ± 0.17 0.32 ± 0.16 0.39 ± 0.18 .0630
% occurrence of NN sequences < 10 ms 0.04 ± 0.07 0.03 ± 0.07 0.06 ± 0.07 .0697 ‡
Word sequence variance 1.35 ± 0.38 1.32 ± 0.36 1.43 ± 0.44 .2222
Symbol probability (0 & 2) 0.51 ± 0.21 0.52 ± 0.20 0.50 ± 0.22 .7748

* = P value from t test comparing mean values between AHI groups. † = t test based on natural log transformed variable. ‡ = t test based on square root 
transformed variable. AHI = apnea-hypopnea index, NN = normal to normal beat-to-beat interval, RMSSD = square root of the mean of the sum of the 
squares of differences between adjacent NN intervals, SDNN = standard deviation of all NN intervals.
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and 0.87). The model yielded an AUC of 0.883 (95% CI: 0.767–
0.924), as well as high sensitivity (0.917 [0.706–0.962]) and 
specificity (0.848 [0.767–0.936]) in our sample. Importantly, 
the two-stage model involving the MVAP and RPI had a low 
NPTP, suggesting only 3.4% (1.5% to 13.3%) of individuals 
screening negative have s-OSA; PPTP was moderately high at 
68.8% (51.9% to 84.2%). Although the combination of MVAP 
and RPI showed the highest AUC, this model was followed 
closely by the two-stage model using only BMI as a first-stage 
screen. Specifically, lower and upper bounds for BMI of 25 
kg/m2 and 39 kg/m2, respectively, and an RPI of 16 events/h, 
yielded an AUC of 0.860 (0.787–0.924), 92.3% sensitivity, and 
79.7% specificity, as well as a similar NPTP (3.5% [0.00% to 
9.0%]) and slightly lower PPTP (63.2% [47.6% to 79.0%]) when 
compared to the MVAP two-stage model. Given that BMI is 
included as part of the MVAP, these results suggest that BMI 
may be a primary driver for the strong associations in the two-
stage MVAP model.

DISCUSSION

This study had two important novel findings. First, a metric 
derived from spectral analysis of the EKG, which we called 
the RPI, had strong ability to discriminate s-OSA in a sample 
of CMVOs. This metric can be obtained easily using ambu-
latory EKG recordings to determine s-OSA risk. Second, 
although the RPI provided excellent discriminatory power 
to screen for s-OSA, this metric, when used in tandem with 
first-stage clinical measures of BMI alone or the MVAP score, 
also worked effectively.

Previous studies from our group12,27,31 and others5,32 have ob-
served that despite a high prevalence of s-OSA in CMVOs and 
its association with sleepiness-related vehicular crashes,17,32 
numerous challenges persist in screening and identifying this 
at-risk population. The use of EKG-derived signals, in particu-
lar, HRV, to classify sleep apnea has vastly improved over the 

past four decades. In particular, recent advances in the utility 
of cardiorespiratory coupled nonlinear signals in addition to 
clinical parameters have been shown to determine both sleep 
stages and sleep disorders.33–38

Ours is the first study to investigate screening for s-OSA 
based on estimations of an EKG-based RPI in CMVOs. Fur-
ther, to strengthen our screening tool we analyzed multiple 
metrics in stages to determine the best measure for develop-
ment of a more robust model for screening for s-OSA in this 
high-risk population. Across our analyses, the optimal single-
stage model was based on RPI alone, while the best perform-
ing two-stage models utilized BMI or MVAP as a first-stage 
screen, followed by RPI among those that had intermediate risk 
after the initial screen. We note that AUC values were similar 
across all three models (ranging from 0.860 to 0.883), as were 
the model sensitivities (ranging from 88.5% to 92.3%). Despite 
these similarities, importantly, the two-stage model has the 
added benefit of limiting the number of individuals who re-
quire more intensive EKG by utilizing more easily obtainable 
clinical measures as an initial screen; this would be expected to 
improve efficiency in both diagnosis and treatment, as well as 
reduce the costs associated with diagnosing OSA in CMVOs. 
In addition, we observed a 15% to 20% improvement in speci-
ficity for our two-stage models when compared to the single-
stage RPI model, suggesting that the two-stage did a better job 
in correctly identifying CMVOs who did not have OSA.

Previous studies have examined time-dependent and spec-
tral analysis of HRV in OSA and found significant associations 
with severity of OSA.35,38–40 In a study of males with mild and 
severe OSA, after controlling for age and BMI, Aydin and col-
leagues showed that metrics described in Table 1 such as stan-
dard deviation of all NN intervals (SDNN) and high frequency 
(HF) were attenuated, whereas the ultra-low frequency (ULF), 
very low frequency (VLF), low frequency (LF), and the ratio 
of low-frequency and high-frequency powers (LF/HF) were 
increased during a 24-hour timeframe compared to patients 
without OSA.35 These findings were present in the presence of 

Table 5—Predictive characteristics of two-stage models with bootstrap confidence intervals.

Stage 1 
Variable

Cutoff Point Stage 2 Estimate (Bootstrapped 95% CI)
Low High RPI AUC Sensitivity Specificity +LR −LR PPTP NPTP

BMI 25 39 16 0.860
(0.787, 0.924)

0.923
(0.810, 1.00)

0.797
(0.702, 0.892)

4.549
(3.019, 8.366)

0.097
(0.00, 0.250)

0.632
(0.476, 0.790)

0.035
(0.00, 0.090)

Age 37 55 10 0.749
(0.676, 0.814)

0.962
(0.864, 1.00)

0.536
(0.424, 0.647)

2.073
(1.649, 2.744)

0.072
(0.00, 0.272)

0.439
(0.311, 0.571)

0.026
(0.00, 0.093)

Neck 
circumference 38 46 16 0.783

(0.695, 0.860)
0.923

(0.750, 1.00)
0.681

(0.579, 0.791)
2.895

(1.989, 4.277)
0.113

(0.00, 0.373)
0.522

(0.367, 0.651)
0.041

(0.00, 0.138)

ESS 2 14 10 0.734
(0.658, 0.800)

0.962
(0.870, 1.00)

0.478
(0.396, 0.622)

1.843
(1.535, 2.551)

0.080
(0.00, 0.273)

0.410
(0.298, 0.545)

0.029
(0.00, 0.088)

MVAP Index 1 0.33 3.40 10 0.739
(0.618, 0.800)

0.917
(0.705, 0.963)

0.561
(0.463, 0.700)

2.086
(1.486, 2.905)

0.149
(0.060, 0.531)

0.431
(0.299, 0.567)

0.051
(0.022, 0.187)

MVAP 0.22 0.87 16 0.883
(0.767, 0.924)

0.917
(0.706, 0.962)

0.848
(0.767, 0.936)

6.050
(3.434, 13.15)

0.098
(0.045, 0.348)

0.688
(0.519, 0.842)

0.034
(0.015, 0.133)

−LR = negative likelihood ratio, +LR = positive likelihood ratio, AUC = area under the curve, BMI = body mass index, CI = confidence interval, ESS = Epworth 
Sleepiness Scale, MVAP = Multi-Variable Apnea Prediction, MVAP Index 1 = Multi-Variable Apnea Prediction Index, NPTP = negative posttest probability, 
PPTP = positive posttest probability, RPI = respiratory power index.
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common comorbidities such as hypertension, which is preva-
lent in CMVOs.35 Roche and colleagues analyzed seven HRV 
metrics, and found that observed differences between daytime 
and nighttime values of SDNN index and the square root of 
the mean of the sum of the squares of differences between ad-
jacent NN intervals were significant, independent predictors 
for OSA.38

Busek et al.39 observed that select HRV metrics varied by 
sleep stage. Total spectrum power, VLF, LF/HF ratio, and the 
LF spectral component were higher during rapid eye movement 
(REM) compared to stage N2 and stage N4 of nonrapid eye 
movement (NREM) sleep, whereas the HF spectral band was 
increased in stage N2 and N4 of NREM sleep. Whether HRV 
metrics, including RPI and severity of s-OSA, are influenced 
by the disrupted nature of sleep architecture and circadian dys-
regulation that may be prominent in evening/night shift work 
for CMVOs remain unknown. Another method, which com-
bines oximetry with HRV indices,41 may be a potential screen-
ing tool as well, given that oximetry has also been shown to be 
an effective second-stage screening tool in CMVOs.8

Studies have shown that the most noticeable differences 
in HRV in patients with OSA are observed in stage N3/N4 
sleep and REM sleep stages in human3,39,42 and animal mod-
els.43 Given the decrease in metabolic activity, stages N3 and 
N4 sleep are associated with a substantial decline in the VLF 
component of HRV.39,43 In participants with OSA, VLF val-
ues during wake did not differ from those during light sleep. 
This equalization of values (known as “non-dipping” 44 during 
sleep) may be a consequence of OSA. After 3 months of con-
tinuous positive airway pressure (CPAP) therapy, the differ-
ence in VLF values between wake and light sleep was restored, 
resembling values seen in control participants without OSA.42 
This supports the view that long-term CPAP treatment could 
be detected by EKG markers of parasympathetic activity.45

Our study had several strengths, including its prospective 
design and confirmation of all OSA cases with full PSG. The 
tool we propose, in contrast to PSG, is more amenable to mass 
screening because it is inexpensive and allows self-application. 
Moreover, EKG may be more acceptable to long-haul driv-
ers, as it can be applied in the berth or at home, and can be 
dispensed and retrieved by mail, thus avoiding reliance on 
overnight sleep in a laboratory. Our study limitations include 
small sample size, which limits the ability to control for po-
tential confounding variables, such as the use of beta-adren-
ergic blockers, which can restrict HRV. The RPI may not be 
suitable for use in such groups, nor in groups with significant 
comorbidities such as sick sinus syndrome, myocardial infarc-
tion, diabetic neuropathy, and cardiac failure. These condi-
tions, however, may not pertain to many employed CMVOs, 
who must meet fitness-for-duty requirements mandated by the 
Federal Motor Carrier Safety Administration during a medical 
evaluation that must occur every 2 years.31,45,46 Thus, CMVOs 
with predetermined diseases such as uncontrolled diabetes, 
hypertension or heart disease are disqualified from obtaining 
a license.31,45 Nevertheless, any disease condition that may par-
lay a high sympathetic tone could change HRV and respira-
tion. However, the RPI method utilized in this study includes 
only noise-free episodes, and a decreased RSA does not alter 

the estimated EKG-derived respiration (Figure 1). Another is-
sue that could arise with our model is that of chain of custody, 
that is, ensuring that the intended participant is the one who 
actually wore the device. Solutions to chain-of-custody issues 
have already been introduced and their utility analyzed with 
respect to portable home sleep apnea testing devices; these so-
lutions may also be applicable to EKG.11,47 Further, indepen-
dent studies should evaluate the predictive characteristics and 
performance of optimal cutoff points described here within 
independent populations.

Future studies should also explore the use of HRV/RPI as a 
screening tool using in a prospective, randomized design and 
evaluate its cost-effectiveness in the diagnosis of s-OSA. Such 
an evaluation should account for not only the costs of screen-
ing, but also the cost savings through prevented crashes, and 
the costs related to crashes that may result from missed cases. 
Other at-risk groups should also be explored, such as CMVOs 
who engage in night-shift driving and may be at even higher 
risk for crashes.48,49

In conclusion, the model presented here provides an effi-
cient and accurate paradigm for detecting severe OSA within 
a commercial driver population. This can improve screening 
and diagnosis, facilitate timely treatment, prevent negative 
health consequences to individual drivers and reduce the risk 
of sleepiness-related crashes. Additional prospective studies to 
assess this approach in the commercial driver and other popu-
lations are warranted.

ABBRE VI ATIONS

−LR, negative likelihood ratio
+LR, positive likelihood ratio
AASM, American Academy of Sleep Medicine
AHI, apnea-hypopnea index
AUC, area under the curve
BMI, body mass index
CI, confidence intervals
CMVO, commercial motor vehicle operator
CPAP, continuous positive airway pressure
EKG, electrocardiography
ESS, Epworth Sleepiness Scale
HF, high frequenc
HRV, heart rate variability
LF, low frequency
LF/HF, ratio of low-frequency and high-frequency powers 
MVAP, Multi-Variable Apnea Prediction
NC, neck circumference
NPTP, negative posttest probability
NREM, non-rapid eye movement
OSA, obstructive sleep apnea
PPTP, positive posttest probability
PSG, polysomnography
REM, rapid eye movement
RPI, respiratory power index
RSA, respiratory sinus arrhythmia
s-OSA, severe OSA
SD, standard deviationD
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SDNN, standard deviation of all NN intervals
ULF, ultra-low frequency
VLF, very low frequency
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