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Study Objectives: We have developed the CardioRespiratory Sleep Staging (CReSS) algorithm for estimating sleep stages using heart rate variability and
respiration, allowing for estimation of sleep staging during home sleep apnea tests. Our objective was to undertake an epoch-by-epoch validation of algorithm
performance against the gold standard of manual polysomnography sleep staging.
Methods:Using 296 polysomnographs, we created a limited montage of airflow and heart rate and deployed CReSS to identify each 30-second epoch as wake,
light sleep (N1 + N2), deep sleep (N3), or rapid eye movement (REM) sleep. We calculated Cohen’s kappa and the percentage of accurately identified epochs. We
repeated our analyses after stratification by sleep-disordered breathing (SDB) severity, and after adding thoracic respiratory effort as a backup signal for periods of
invalid airflow.
Results: CReSS discriminated wake/light sleep/deep sleep/REM sleep with 78% accuracy; the kappa value was 0.643 (95% confidence interval, 0.641–0.645).
Discrimination of wake/sleep demonstrated a kappa value of 0.711 and accuracy of 89%, non-REM sleep/REM sleep demonstrated a kappa of 0.790 and accuracy
of 94%, and light sleep/deep sleep demonstrated a kappa of 0.469 and accuracy of 87%. Kappa values did not vary bymore than 0.07 across subgroups of no SDB,
mild SDB, moderate SDB, and severe SDB. Accuracy increased to 80%, with a kappa value of 0.680 (95% confidence interval, 0.678–0.682), when CReSS
additionally utilized the thoracic respiratory effort signal.
Conclusions:We observed substantial agreement between CReSS and the gold-standard comparator of manual sleep staging of polysomnographic signals,
whichwas consistent across the full range of SDB severity. Future research should focus on the extent towhichCReSS reduces the discrepancy between the apnea-
hypopnea index and the respiratory event index, and the ability of CReSS to identify REM sleep–related obstructive sleep apnea.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: The lack of neurological signals collected during home sleep apnea tests means that it is not possible to identify
sleep stages and total sleep time, which has important clinical implications. We have recently developed an algorithm designed to estimate sleep stages
using heart rate and airflow signals.
Study Impact: In this validation study, we found substantial agreement between sleep staging determined by the algorithm vs the gold standard of manual
sleep staging, which was consistent across the full spectrum of sleep-disordered breathing severity and improved when a respiratory effort signal was used
as an input in addition to airflow and heart rate. Future research is warranted to determine the impact of the algorithm on sleep-disordered breathing
diagnostic accuracy.

INTRODUCTION

Home sleep apnea test (HSAT) devices are increasingly used as an
alternative topolysomnography (PSG) todiagnose sleep-disordered
breathing (SDB).1 Potential advantages of taking the diagnostic
process from the hospital to the home include reduced cost of
equipment, increased access in remote and/or underserved areas,
higher patient turnover, increasedpatient comfort, and the collection
of data that are more representative of a patient’s habitual sleep.1–3

There are, however, some drawbacks associatedwith relying on
a reduced signal montage, which varies by device but at min-
imum includes airflow, pulse oximetry, and respiratory effort,

for identification and classification of apneas and hypopneas.
The absence of electroencephalography, electrooculography,
and electromyography signals required for sleep staging means
that the apnea-hypopnea index (AHI) cannot be calculated;
instead, total sleep time is substituted by either monitoring time
or recording time for calculation of the respiratory event index
(REI).4 Reliance on the REI in place of the AHI results in re-
duced SDBdiagnostic sensitivity that is not easily quantifiable.5

Further, there is no ability to screen for rapid eye movement
(REM) sleep–related obstructive sleep apnea (OSA) or identify
abnormalities in sleep architecture that may impact the sub-
sequent treatment plan or signify the need for further testing.6
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We recently developed an algorithm for estimating sleep stages
using heart rate variability and respiration known as CardioRe-
spiratory Sleep Staging (CReSS). TheCReSS algorithm is device-
agnostic and requires airflowandheart rate inputswith anoption to
rely on a respiratory effort signal during periods when airflow is
absentor invalid.Thepurposeof thecurrent studywas toundertake
an epoch-by-epoch validation of the CReSS algorithm against the
gold-standard comparator of manual PSG sleep staging. In ex-
ploratory analyses, we investigated the impact of different signal
types for measuring airflow and derived the heart rate, the con-
sistencyof algorithmperformance acrossSDBseverity subgroups,
and the accuracyof algorithmperformancewhen respiratory effort
wasusedas abackup signal for airflow.Anadditional, overarching
objective was to undertake our analyses in a large sample, to
support the generalizability of the algorithm performance.

METHODS

The study was approved by the Western Institutional Review
Board (20192293). We accessed deidentified home PSGs from
the National Sleep Research Resource7,8 that were originally
collected in the Sleep Heart Health Study (SHHS; Only PSGs
from the second SHHS study visit were accessed)9,10 and the

Multi-Ethnic Study of Atherosclerosis (MESA)11; thus, in-
formed consent was waived. The PSGs used for these analyses
are considered an independent validation dataset, as none were
used for algorithm training, which was undertaken using PSGs
from the Siesta12 and Somnoval13 datasets.

Selection of PSGs
Based on the manual scoring logs collected in the original
studies, we excluded PSGs with unreliable sleep staging or
apnea/hypopnea scoring, as well as those containing < 4 hours
of valid nasal pressure or thermistry, transmissive finger pho-
toplethysmography (PPG) or electrocardiography (ECG), and/
or thoracic respiratory effort signals. From the SHHS dataset,
we excluded PSGs collected from participants with a cardiac
pacemaker, heart failure, or atrial fibrillation; this information
was not available in the MESA dataset. From the remaining
PSGs, we randomly selected n = 74 from each dataset within
each of the following disease severity categories: AHI < 5
events/h (no SDB), 5 to < 15 events/h (mild), 15 to < 30 events/h
(moderate), and ≥ 30 events/h (severe), using the AHI variable
provided in the National Sleep Research Resource metadata
(with hypopneas defined according to a 3% SpO2 desaturation).
We did not seek to analyze all MESA and SHHS PSGs that met

Figure 1—Flow chart of the preprocessed input data through the artificial neural network for cardiorespiratory sleep staging.

LSTM = long short-term memory.
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these criteria because although the scoringprocess is automated,
importing rawPSGfiles collected across different platforms and
with different signal montages/labeling is a manual process. As
such, we compared the included PSGs to the entire MESA/
SHHS cohort with respect to age, sex, sleep architecture, and
AHI (Table S1 in the supplemental material).

Description of the CReSS algorithm
First, interbeat intervals are calculated from the cardiac input
signal (either PPG or ECG), and an instantaneous heart rate
signal is derived from the intervals. When PPG is used as input,
the signal is first band-pass filtered between 0.15 and 2.25 Hz
using a third-order Butterworth filter, after which the pulse feet
are determined by searching for consecutive local minima in the
filtered signal. Heartbeats are located by selection of signal
troughs that are followed by uprising arcswith a strictly positive
slope. Interbeat intervals are calculated as the time between
consecutive selected troughs,which are thenfiltered toplausible
interbeat interval ranges between 0.33 and 1.82 seconds. When
ECG is used as input, the algorithm uses an implementation
based on the approach proposed by Jalil et al.14 Using a discrete
wavelet decomposition with a second-order Mexican hat
function, baseline drift is first removed by zeroing the ap-
proximation coefficients of the transform for a low approxi-
mation level. Singularities in the signal—a subset of which
corresponds toR peaks—are detected by computing thewavelet
transform modulus maxima. The temporal location of the
singularities is determined by tracing themodulusmaxima from
higher to lower scales. Interbeat intervals are then calculated as
the time between the temporal location of selected R-peak
singularities. Next, the instantaneous heart rate and respiratory
signals (airflow, with or without respiratory effort) are all
resampled at 10 Hz and respiratory signals are scaled to a 16-bit
integer range between –32,768 and 32,767.

The CReSS algorithm then uses a deep convolutional neural
network to extract features from the instantaneous heart rate and
respiratory signal/s (airflow, with or without respiratory effort
as backup). If both airflow and respiratory effort signals are
used, then network weights are partially shared between the
signals. A modified version of the ResNeXt15 model for deep
convolutional networks, originally designed for image classi-
fication, was applied using 1-dimensional convolutions in order
to extract high-level features per 30-second epoch from tem-
poral input data. The architecture was enhanced by using scaled
exponential linear units in order to exploit their self-normalizing
properties as described previously.16 Finally, 3 layers of bidi-
rectional long short-term memory17 layers introduce global
context from the entire recording and assign probabilities for
wake, REMsleep, light sleep (LS; corresponding to sleep stages
N1 + N2 according to American Academy of Sleep Medicine
[AASM] criteria18), or deep sleep (DS; corresponding toAASM
sleep stage N3). The design of the long short-term memory
classifier is the same as presented previously.19,20 An overview
of the neural network is shown in Figure 1.

Data processing
The PSG platform varied at each of the 9 SHHS and 6MESA data
collection sites; however, each study deployed standardized data

collectionprocedures andmontage, and sleep staging in30-second
epochs was performed at a central sleep reading center by
experienced, certified sleep technologists. SHHS followed the
Rechtschaffen and Kales criteria,21 while MESA followed the
2007 AASM criteria.22

The full PSGs were provided in the European Data Format,
along with associated annotation files containing manually
scored stages and events and a summary metadata file with
endpoints and lights on/off times. The PSGs were imported into
Sleepware G3 (Philips Respironics, Monroeville, PA) and the

Table 1—Descriptive demographic and clinical information.

MESA (n = 296) SHHS (n = 296)

Age (y) 69.4 ± 8.8 67.5 ± 10.0

Sex (number; %)

Female 154; 52.0% 154; 52.0%

Male 142; 48.0% 142; 48.0%

Race/ethnicity (number; %)

White/Caucasian 117; 39.5% 265; 89.5%

Chinese American 31; 10.5% NA

African American 76; 25.7% 15; 5.1%

Hispanic 72; 24.3% NA

Other NA 16; 5.4%

BMI (kg/m2) NA 28.1 ± 4.9

Neck circumference (cm) NA 37.6 ± 3.9

AHI (events/h)

Mean ± SD 22.9 ± 21.1 17.1 ± 17.1

Median (Q1; Q3) 16.9 (5.7; 34.5) 12.0 (4.4; 24.6)

Range 0–88 0–87

SDB severity per AHI (number; %)*

None 63; 21.3% 82; 27.7%

Mild 76; 25.7% 97; 32.8%

Moderate 73; 24.7% 61; 20.6%

Severe 84; 28.4% 56; 18.9%

Epworth Sleepiness Scale (0-24) 6.2 ± 4.2 7.7 ± 4.0

Total sleep time per PSG (h) 6.0 ± 1.4 6.3 ± 1.1

Recording time (h) 10.6 ± 1.3 10.0 ± 1.1

Data are provided asmean±SD unless indicated otherwise. BMI and neck
circumference were not available in the MESA dataset accessible in the
NSRR.MESA data are complete for all variables in this table. SHHS data in
this table had n = 6 missing Epworth scores and n = 1 missing BMI. Race
and ethnicity are reported as a composite variable, reflecting the data
available from the original studies. *PSGs were selected for inclusion
based on the AHI variable available in the NSRR metadata. When PSGs
and annotation files were imported into Sleepware G3 to re-create manual
scoring, some minor changes to AHI values resulted from adjustments to
event filters and to ensure alignment of lights on/off times per the NSRR
metadata. The AHI value provided in this table reflects the AHI generated
by exporting manual scoring/staging from Sleepware G3 and is consistent
with all other AHI values throughout this report. AHI = apnea-hypopnea
index, BMI = body mass index, MESA = Multi-Ethnic Study of Atherosclerosis,
NA = data not available, NSRR= National Sleep Research Resource,
PSG = polysomnography, Q = quartile, SD = standard deviation, SDB =
sleep-disordered breathing, SHHS = Sleep Heart Health Study.
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lights on/off information was added. Manual sleep staging was
left unchanged and exported in 30-second epochs. InMESA,N1
andN2were combined and labeled as LS, andN3was labeled as
DS.22 In SHHS, stages 1 and 2 were combined and labeled LS,
and stages 3 and 4 were combined and labeled DS.21 To create
HSAT montages, the full PSGs were reduced to only airflow
(nasal pressure in MESA, thermistor in SHHS) and heart rate
(PPG in MESA, ECG in SHHS), and we added thoracic re-
spiratory effort for our exploratory analyses. The reduced
montages were imported into Sleepware G3, lights on/off in-
formation was added, and the CReSS algorithm was executed.

Statistical analyses
All analyseswere performed usingMatlabR2019b (MathWorks,
Natick, MA), validated against IBM SPSS (version 19.0.0.2;
Armonk, NY). For our primary analyses, we undertook epoch-
by-epoch comparisons of manual vs CReSS sleep staging using
the MESA dataset, calculating the percentage accuracy of wake/
LS/DS/REM sleep (that is, the percentage of epochs correctly
identified by CReSS), as well as Cohen’s kappa values for
comparisonsofwake/LS/DS/REMsleep,wake/non-REM(NREM)
sleep/REM sleep, wake/sleep, NREM sleep/REM sleep, and LS/
DS. For the discrimination of NREM sleep/REM sleep that did not

includewake,we transformed the confusionmatrixby removing the
wake column and row; the same transformation was undertaken for
the LS/DS discrimination by removing both wake and REM sleep.
We compared our kappa values against the benchmarks of Landis
andKoch23; a kappa > 0.6 reflected substantial agreement, while
a kappa > 0.4 reflected moderate agreement. Our primary an-
alyses were conducted with MESA PSGs only, as manual sleep
staging was undertaken with the current AASM scoring criteria
in that study.18

We then calculated the percentage accuracy of wake/sleep,
NREM sleep/REM sleep, LS/DS, andwake/NREM sleep/REM
sleep, the macro-F1 score (the arithmetic mean of F1 scores for
each sleep stage), and the weighted macro-F1 score, with
weighting performed according to the frequency of each sleep
stage as described elsewhere.24All analyseswere repeated using
the SHHS dataset to assess the impact of measuring airflow via
nasal pressure vs thermistry and the impact of measuring heart
rate from PPG vs ECG, as MESA used the former combination
while SHHS used the latter. Within each dataset, we conducted
stratified analyses after categorizing each PSG according to
SDB severity (AHI < 5 events/h, 5 to < 15 events/, 15 to < 30
events/h, and ≥ 30 events/h, using the AHI generated in
Sleepware G3 based on manual sleep staging and event

Table 2—Kappa values and accuracy for manual vs CReSS sleep staging.

Sleep Stage
Discrimination

MESA Dataset (n = 296) SHHS Dataset (n = 296)

Kappa
(95% CI)

Macro-F1
(95% CI)

Weighted
Macro-F1
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Macro-F1
(95% CI)

Weighted
Macro-F1
(95% CI)

Percent
Accuracy

CReSS Applied to Heart Rate and Airflow Signals

Wake/LS/DS/
REM sleep

0.643
(0.641–0.645)

0.728
(0.717–0.740)

0.777
(0.768–0.785)

77.6 0.578
(0.576–0.581)

0.692
(0.679–0.706)

0.739
(0.728–0.750)

73.3

Wake/sleep 0.711
(0.708–0.714)

0.855
(0.843–0.864)

0.897
(0.888–0.903)

89.3 0.634
(0.631–0.638)

0.816
(0.803–0.827)

0.890
(0.882–0.897)

88.3

NREM sleep/
REM sleep

0.790
(0.786–0.793)

0.895
(0.885–0.902)

0.936
(0.930–0.940)

93.5 0.756
(0.752–0.759)

0.878
(0.866–0.887)

0.926
(0.919–0.931)

92.4

LS/DS 0.469
(0.462–0.475)

0.734
(0.718–0.748)

0.870
(0.861–0.878)

86.8 0.445
(0.439–0.451)

0.721
(0.707–0.733)

0.846
(0.837–0.854)

83.6

Wake/NREM sleep/
REM sleep

0.719
(0.717–0.722)

0.819
(0.808–0.827)

0.850
(0.841–0.857)

84.8 0.665
(0.662–0.668)

0.781
(0.765–0.793)

0.832
(0.821–0.841)

82.6

CReSS Applied to Heart Rate, Airflow, and Thoracic Respiratory Effort Signals

Wake/LS/DS/
REM sleep

0.680
(0.678–0.682)

0.748
(0.737–0.759)

0.800
(0.791–0.807)

79.8 0.635
(0.633–0.637)

0.750
(0.723–0.769)

0.805
(0.782–0.819)

76.7

Wake/sleep 0.756
(0.753–0.759)

0.878
(0.868–0.887)

0.911
(0.903–0.918)

90.8 0.705
(0.701–0.708)

0.885
(0.862–0.900)

0.909
(0.889–0.920)

90.4

NREM sleep/
REM sleep

0.823
(0.820–0.827)

0.912
(0.906–0.918)

0.944
(0.940–0.949)

94.5 0.807
(0.803–0.810)

0.908
(0.894–0.920)

0.942
(0.932–0.950)

93.8

LS/DS 0.461
(0.454–0.468)

0.730
(0.715–0.745)

0.874
(0.865–0.881)

87.0 0.464
(0.458–0.470)

0.735
(0.705–0.771)

0.881
(0.863–0.895)

84.3

Wake/NREM sleep/
REM sleep

0.762
(0.760–0.764)

0.847
(0.838–0.856)

0.871
(0.863–0.878)

86.9 0.729
(0.727–0.731)

0.847
(0.826–0.864)

0.869
(0.851–0.882)

85.8

An F1 score is the harmonic mean of positive predictive value (precision) and sensitivity (recall); the macro-F1 score presented here for each sleep stage
discrimination is the arithmetic mean of the F1 scores calculated across all sleep stages. In addition, we present weightedmacro-F1 scores performed according to
the frequency of each sleep stagewithin the dataset. Discriminations of wake/LS/DS/REMsleepandwake/NREMsleep/REMsleepare basedon all epochs. For the
discrimination of NREM sleep/REM sleep that does not include wake, we transformed the confusion matrix by removing the wake column and row; the same
transformation was undertaken for the LS/DS discrimination by removing both wake and REM sleep. CI = confidence interval, CReSS = CardioRespiratory Sleep
Staging, DS = deep sleep (corresponding to N3), LS = light sleep (corresponding to N1 + N2), NREM = non-REM, REM = rapid eye movement.
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scoring). Finally, we repeated all analyses in both datasets after
allowing CReSS to utilize the thoracic respiratory effort signal
in addition to airflow and heart rate.

RESULTS

Descriptive information is provided in Table 1. Participants
contributing to the MESA and SHHS PSGs in our sample were
aged 69 and 68 years on average, respectively, with an ap-
proximately equal distribution ofmales and females. The SHHS
sample was predominantly White/Caucasian, whereas MESA
recruitment targeted a more racially/ethnically diverse sample.
As anticipated given our sampling strategy, our sample reflected
a wide range of SDB severity, from 0–88 and 87 events/h in
MESA and SHHS, respectively. Demographics, disease se-
verity, and sleep architecture were similar when our selected
samples were compared to the larger MESA and SHHS cohorts
(Table S1).

Performance of CReSS with reference to manual sleep
staging in MESA (primary analyses)
Cohen’s kappa values along with percent accuracy comparing
CReSS (applied to airflow and heart rate signals only) to

manually scored PSG sleep staging are provided in the upper
part of Table 2. For each sleep stage discrimination, the lower
bound of the 95% confidence interval for the kappa value
exceeded our prespecified performance threshold. For the most
granular sleep stage discrimination performed by CReSS—that
is, the discrimination of wake/LS/DS/REM sleep—Cohen’s
kappa was 0.643 (95% confidence interval, 0.641–0.645),
which equates to substantial agreement with manual PSG
staging per the thresholds of Landis and Koch.23 The per-
centage of wake/LS/DS/REM sleep epochs that were staged
correctly byCReSSwas 77.6%.Accuracy increasedwhen sleep
stages were combined into discriminations of wake/sleep and
wake/NREM sleep/REM sleep. A confusion matrix is provided
in Table 3.

Impact of different airflow and heart signals (SHHS
data) on CReSS performance
The MESA study used nasal pressure for airflow and PPG for
heart rate, while SHHS used thermistry and ECG, respectively.
We therefore repeated the above analyses using 296 PSGs from
SHHS to determine the impact of different signal types on the
performance of CReSS. As shown in the upper part of Table 2,
the accuracy of wake/LS/DS/REM sleep discrimination using
SHHS data was 73.3%. Again, accuracy increased as different

Table 3—Confusion matrix for epoch-by-epoch sleep staging in MESA.

CReSS Sleep Staging

PSG Sleep Staging

CReSS Applied to Heart Rate and Airflow Signals

Wake REM Sleep Light Sleep Deep Sleep

Wake
55,524 943 7,383 203

71.0%* 2.3% 4.9% 0.8%

REM sleep
3,152 32,275 6,115 68

4.0% 80.1%* 4.1% 0.3%

Light sleep
19,267 7,004 126,217 11,271

24.6% 17.4% 84.4%* 46.6%

Deep sleep
280 88 9,802 12,655

0.4% 0.2% 6.6% 52.3%*

PPV 86.7% 77.6% 77.1% 55.4%*

CReSS Applied to Heart Rate, Airflow, and Thoracic Respiratory Effort Signals

Wake REM Sleep Light Sleep Deep Sleep

Wake
59,487 598 7,299 131

76.0%* 1.5% 4.9% 0.5%

REM sleep
2,752 34,390 6,009 69

3.5% 85.3%* 4.0% 0.3%

Light sleep
15,837 5,265 127,388 11,987

20.2% 13.1% 85.2%* 49.5%

Deep sleep
147 57 8,821 12,010

0.2% 0.1% 5.9% 49.6%*

PPV 88.1% 79.6% 79.4% 57.1%*

*Values are the number of epochs of each PSG-scored sleep stage that were correctly identified by CReSS and the percentage of epochs within each PSG-
defined sleep stage that were correctly identified by CReSS (that is, sensitivity). The percentage values labeled as PPV represent the percentage of epochs
within each CReSS-defined sleep stage that was correct per PSG. CReSS = CardioRespiratory Sleep Staging, MESA =Multi-Ethnic Study of Atherosclerosis,
PPV = positive predictive value, PSG = polysomnography, REM = rapid eye movement.
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sleep stages were combined. A confusion matrix is provided
in Table 4.

Performance of CReSS with reference to manual sleep
staging stratified by SDB severity
Cohen’s kappa values and percent accuracy of each sleep stage
discrimination stratified by SDB disease severity are provided
in the upper parts of Table 5 (MESA) and Table 6 (SHHS), as
well as Figure 2. In MESA, the kappa values did not vary by
more than 0.07 across disease severity subgroups; in SHHS, the
kappa values were within 0.14. There was also little variability
in the percentage of epochs correctly staged by CReSS across
subgroups in both datasets.

Impact of additionally using a respiratory effort signal
on CReSS performance
The upper parts of Table 2, Table 3, Table 4, Table 5, and
Table 6 show the performance of CReSS when deployed on
airflow and heart rate only; the lower parts of each table
show the performance of CReSS when the respiratory in-
ductance plethysmography thoracic effort signal was used
additionally by the algorithm, which specifically affected
periods of absent or invalid airflow. In almost every analysis,

the performance of CReSS improved by allowing this ad-
ditional input.

DISCUSSION

This study analyzed the performance of the novel CReSS al-
gorithm designed to estimate sleep stages from respiratory and
heart rate signals, with reference to the gold standard of man-
ually scored PSG signals. We found that in 4 different sleep
stage discriminations (wake/LS/DS/REM sleep, wake/sleep,
NREM sleep/REM sleep, LS/DS), agreement between
CReSS and manual scoring was substantial.23 Identification of
wake/LS/DS/REM sleep was 78% accurate, with a kappa value
of 0.643. The performance of CReSS was significantly more
accurate than a similar algorithm designed to estimate sleep
stages from finger peripheral arterial tonometry, derived pulse
rate, oxygen desaturation, and actigraphy signals, which had a
reported kappa value of 0.475 (95% confidence interval, 0.472–
0.479) for wake/LS/DS/REM sleep.25

Our confusion matrices showed that misclassified epochs
weremost often incorrectly identified asLS, representing11.5%
and 14.1% of true-wake epochs, 14.7% and 11.6% of true-REM

Table 4—Confusion matrix for epoch-by-epoch sleep staging in SHHS.

CReSS Sleep Staging

PSG Sleep Staging

CReSS Applied to Heart Rate and Airflow Signals

Wake REM Sleep Light Sleep Deep Sleep

Wake
39,954 942 6,768 324

61.1%* 2.1% 4.8% 0.9%

REM sleep
4,009 33,326 4,934 251

6.1% 73.4%* 3.5% 0.7%

Light sleep
20,919 11,001 121,248 18,100

32.0% 24.2% 85.5%* 52.4%

Deep sleep
511 161 8,783 15,888

0.8% 0.4% 6.2% 46.0%*

PPV 83.3% 78.4% 70.8% 62.7%*

CReSS Applied to Heart Rate, Airflow, and Thoracic Respiratory Effort Signals

Wake REM Sleep Light Sleep Deep Sleep

Wake
44,270 562 5,566 197

67.7%* 1.2% 3.9% 0.6%

REM sleep
2,917 36,584 4,888 208

4.5% 80.5%* 3.4% 0.6%

Light sleep
18,001 8,192 123,168 17,859

27.5% 18.0% 86.9%* 51.7%

Deep sleep
205 92 8,111 16,299

0.3% 0.2% 5.7% 47.2%*

PPV 87.5% 82.0% 73.7% 66.0%*

*Values are the number of epochs of each PSG-scored sleep stage that were correctly identified by CReSS and the percentage of epochs within each PSG-
defined sleep stage that were correctly identified by CReSS (that is, sensitivity). The percentage values labeled as PPV represent the percentage of epochs
within each CReSS-defined sleep stage that was correct per PSG. CReSS = CardioRespiratory Sleep Staging, PPV = positive predictive value, PSG =
polysomnography, REM = rapid eye movement, SHHS = Sleep Heart Health Study.
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sleep epochs, and 42.9% and 34.7% of true-DS epochs in the
MESA and SHHS datasets, respectively. Misclassified true-LS
epochs were most often incorrectly identified as either wake
(11.8% and 12.2% in MESA and SHHS, respectively) or DS
(6.9% and 10.6% in MESA and SHHS, respectively). The
performance ofCReSS for identification ofDSwas not as strong
as for other sleep stages, a trend observed in both datasets and
across the full range ofOSAseverity; however, the kappa values
for differentiation of LS/DS in both MESA and SHHS were
within the range defined as moderate agreement per Landis and
Koch.23 These data should be considered alongside evidence of
disagreement across technologists for identification of N3. In
2018, Younes et al26 calculated the intraclass correlation co-
efficient comparing N3 sleep duration from 10 individual
scorers to the average N3 duration of all scorers, and reported
values ranging from 0.18 to 0.90. In that study, 16,308 epochs
were identified as N3 by at least 1 of the 10 scorers, but of these,
less than half (40.8 ± 15.1%)were not identified as N3 by any of
the other scorers. Majority agreement (that is, > 3 of the 6
scorers) was achieved in only 22.0 ± 17.3% ofN3 epochs, while
complete agreement was achieved in only 3.8 ± 7.9% of N3
epochs. Similarly, agreement for scoring N3 was low in the
Rosenberg et al27 2013 analysis of the AASM Inter-Scorer

Reliability Program. In that dataset, sensitivity to N3 was
67.4%, compared to 52.3% in the current study (MESAdataset).
The confusionmatrix fromRosenberg et al can be used to derive
a positive predictive value forN3of 59.7% (55.4% in the current
study), anN1 +N2 vsN3 accuracy of 91% (87.0% in the current
study), and a kappa of 0.583 (0.469 in the current study). Thus,
although agreement for N3 between CReSS and single scorers
in the current study was lower than what has been observed
when individual technologists are compared against a majority
score, the gap in performance was not substantial, particularly
when one considers that CReSS does not utilize slow-wave
amplitude in the electroencephalogram to differentiate LS and
DS. Importantly, theCReSS algorithmdifferentiatedwake from
sleep with an accuracy of 89% and NREM sleep from REM
sleep with an accuracy of 94%. Consequently, the CReSS-
derived total sleep time and the time spent in REM sleep are
sensitivemeasures of the gold-standard PSG-based parameters,
which suggests that using CReSS-derived measures may result
in a more accurate estimate of the AHI, as well as a means of
estimating the presence of REM sleep–related OSA from
an HSAT.

Muchof the existing literature on this topic has built on earlier
studies of autonomic activity during sleep28,29 and is focused on

Table 5—Kappa values and accuracy of manual sleep staging vs CReSS sleep staging in MESA by sleep apnea
severity subgroups.

Sleep Stage
Discrimination

No SDB (n = 63) Mild SDB (n = 76) Moderate SDB (n = 73) Severe SDB (n = 84)

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

CReSS Applied to Heart Rate and Airflow Signals

Wake/LS/DS/
REM sleep

0.648
(0.643–0.653)

77.7 0.653
(0.648–0.657)

78.0 0.650
(0.646–0.655)

77.8 0.621
(0.617–0.626)

76.9

Wake/sleep 0.729
(0.723–0.736)

90.9 0.734
(0.728–0.740)

90.7 0.721
(0.716–0.727)

88.9 0.667
(0.661–0.673)

87.2

NREM sleep/
REM sleep

0.808
(0.801–0.815)

94.1 0.807
(0.801–0.813)

93.8 0.781
(0.773–0.788)

93.3 0.763
(0.755–0.770)

93.0

LS/DS 0.473
(0.461–0.486)

84.7 0.442
(0.429–0.455)

85.4 0.479
(0.465–0.493)

87.3 0.477
(0.463–0.491)

89.6

Wake/NREM sleep/
REM sleep

0.743
(0.738–0.748)

86.5 0.744
(0.740–0.749)

86.2 0.720
(0.716–0.725)

84.4 0.677
(0.672–0.682)

82.5

CReSS Applied to Heart Rate, Airflow, and Thoracic Respiratory Effort Signals

Wake/LS/DS/
REM sleep

0.687
(0.682–0.692)

80.1 0.682
(0.677–0.686)

79.8 0.692
(0.687–0.696)

80.3 0.662
(0.657–0.666)

79.2

Wake/sleep 0.774
(0.768–0.780)

92.2 0.767
(0.761–0.772)

91.7 0.770
(0.765–0.776)

90.7 0.720
(0.714–0.725)

89.1

NREM sleep/
REM sleep

0.842
(0.836–0.849)

95.1 0.847
(0.841–0.852)

95.0 0.816
(0.810–0.823)

94.3 0.790
(0.783–0.796)

93.6

LS/DS 0.484
(0.471–0.496)

85.3 0.418
(0.405–0.432)

85.2 0.472
(0.458–0.486)

87.6 0.465
(0.451–0.480)

89.7

Wake/NREM sleep/
REM sleep

0.785
(0.780–0.789)

88.6 0.781
(0.777–0.786)

88.1 0.767
(0.763–0.771)

86.9 0.722
(0.718–0.727)

84.7

Discriminations of wake/LS/DS/REM sleep and wake/NREM sleep/REM sleep are based on all epochs. For the discrimination of NREM sleep/REM sleep that
does not include wake, we transformed the confusion matrix by removing the wake column and row; the same transformation was undertaken for the LS/DS
discrimination by removing both wake and REM sleep. CI = confidence interval, CReSS = CardioRespiratory Sleep Staging, LS = light sleep (corresponding to
N1 +N2), DS = deep sleep (corresponding to N3), MESA =Multi-Ethnic Study of Atherosclerosis, NREM=non-REM, REM= rapid eyemovement, SDB = sleep-
disordered breathing.
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estimating sleep stages using a single autonomic modality. For
example, a previous study developed a 4-stage (wake/LS/DS/
REMsleep) discrimination algorithmbased on a combination of
manually engineered features from ECG and a recurrent neural
network.When tested on data from 195 healthy participants and
97 patients with a sleep or sleep-impacting disorder, the study
achieved an average kappa of 0.61 and accuracy of 77%.19

Another study observed almost identical performance of the
algorithm (kappa 0.60; accuracy 76%) using a dataset of 389
patients experiencing different sleep disorders.20 Beattie et al30

reported a kappa of 0.52 and accuracy of 69% using actigraphy
and manually engineered heartrate variability features from a
wrist-worn PPG device, after cross-validation with 60 healthy
participants. Li et al31 reported a kappa of 0.47 and accuracy of
66% using convolutional neural networks on ECG signals after
cross-validation on 5,793 PSGs collected during the SHHS;
however, performance dropped (kappa 0.31; accuracy 66%)
when cross-validation was performed in a separate dataset
of 994 participants referred to a clinical sleep laboratory.
Finally, Aggarwal et al32 used neural conditional random
fields to classify sleep stages based on airflow, achieving a
kappa of 0.57 and accuracy of 74% when testing 400 randomly
selected patients with sleep apnea from the MESA dataset.

The performance of CReSS is superior to the results of these
prior studies that are based on a single input signal, highlighting
the apparent benefit of a multimodal approach.

Few studies have focused on sleep staging using a combi-
nation of cardiac and respiratory modalities. A 2018 study
showed that a combination of manually engineered features
extracted from an ECG signal and from thoracic respiratory
effort with a conditional random fields classifier achieved a
kappa of 0.47 and accuracy of 69% for 4-stage discrimination
(wake/LS/DS/REM sleep), using data collected from 180
healthy participants and 51 patients with SDB.33 Using a
convolutional neural network to perform 5-stage discrimination
(wake/N1/N2/N3/REM sleep) based on ECG and abdominal
respiratory effort, Sun et al24 achieved a kappa of 0.60, using
1,000 PSGs randomly selected from a set of 8,682 acquired
during diagnostic, positive airway pressure titration, and split-
night studies. Again, these results are not as strong as the kappa
value of 0.643 and 78% accuracy achieved with CReSS
deployed on heart rate and airflow signals in the current study.
Similarly, the weighted macro-F1 score in our study (0.78) was
slightly higher than that reported by Sun et al (0.76).

In exploratory analyses, we found that the performance of
CReSSwas similar regardless of whether airflowwasmeasured

Table 6—Kappa values and accuracy of manual sleep staging vs CReSS sleep staging in SHHS by sleep apnea
severity subgroups.

Sleep Stage
Discrimination

No SDB (n = 82) Mild SDB (n = 97) Moderate SDB (n = 61) Severe SDB (n = 56)

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

Kappa
(95% CI)

Percent
Accuracy

CReSS Applied to Heart Rate and Airflow Signals

Wake/LS/DS/
REM sleep

0.613
(0.608–0.617)

74.6 0.597
(0.592–0.601)

74.1 0.546
(0.541–0.552)

71.5 0.522
(0.515–0.528)

71.9

Wake/sleep 0.681
(0.674–0.688)

90.2 0.654
(0.648–0.661)

89.7 0.635
(0.627–0.643)

88.4 0.550
(0.542–0.559)

83.5

NREM sleep/
REM sleep

0.789
(0.782–0.795)

93.0 0.776
(0.770–0.782)

92.6 0.719
(0.710–0.728)

91.5 0.692
(0.681–0.702)

91.8

LS/DS 0.479
(0.469–0.490)

82.3 0.461
(0.451–0.471)

82.9 0.370
0.356–0.385)

81.5 0.381
(0.362–0.401)

89.0

Wake/NREM sleep/
REM sleep

0.709
(0.705–0.714)

84.9 0.691
(0.686–0.695)

84.0 0.650
(0.644–0.656)

82.1 0.576
(0.569–0.582)

77.9

CReSS Applied to Heart Rate, Airflow, and Thoracic Respiratory Effort Signals

Wake/LS/DS/
REM sleep

0.666
(0.662–0.671)

78.0 0.643
(0.639–0.648)

77.0 0.612
(0.606–0.617)

75.4 0.592
(0.586–0.598)

76.0

Wake/sleep 0.741
(0.735–0.748)

91.9 0.714
(0.708–0.720)

91.4 0.719
(0.712–0.726)

91.0 0.634
(0.626–0.641)

86.3

NREM sleep/
REM sleep

0.845
(0.840–0.851)

94.8 0.816
(0.811–0.821)

93.8 0.773
(0.766–0.781)

92.9 0.752
(0.742–0.761)

93.3

LS/DS 0.497
(0.487–0.507)

82.9 0.479
(0.469–0.489)

83.5 0.398
(0.384–0.412)

82.4 0.386
(0.366–0.406)

89.7

Wake/NREM sleep/
REM sleep

0.771
(0.767–0.775)

87.9 0.743
(0.739–0.747)

86.6 0.723
(0.718–0.729)

85.6 0.652
(0.646–0.658)

81.7

Discriminations of wake/LS/DS/REM sleep and wake/NREM sleep/REM sleep are based on all epochs. For the discrimination of NREM sleep/REM sleep that
does not include wake, we transformed the confusion matrix by removing the wake column and row; the same transformation was undertaken for the LS/DS
discrimination by removing both wake and REM sleep. CI = confidence interval, CReSS =CardioRespiratory Sleep Staging, DS = deep sleep (corresponding to
N3), LS = light sleep (corresponding to N1 + N2), NREM = non-REM, REM = rapid eye movement, SDB = sleep-disordered breathing, SHHS = Sleep Heart
Health Study.
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by nasal pressure or thermistry, or whether heart rate was de-
rived from PPG or ECG. Although performance was slightly
stronger in the dataset that used nasal pressure and PPG
(MESA), we suspect that this reflects the use of Rechtschaffen
andKales21 sleep staging criteria in SHHS,whereas CReSSwas
trained based on the more recent AASM criteria. Although
similar, the 2 methods are not identical. The AASM scoring
criteria are more sensitive when scoring wakefulness and slow
wave sleep due to the use of additional electroencephalogram
signals (occipital leads for alpha waves and frontal leads for
delta and slow waves).34 We also found that the performance of
CReSS was more robust when the thoracic respiratory effort
signalwas used as a backup signal, which offers particular value
during periods of HSATs inwhich the airflow signal is absent or
invalid. Of note, the AASM recommends thermistry for the
detection of apneas, and nasal pressure for the detection of
hypopneas (The AASM Manual for the Scoring of Sleep and
Associated Events: Rules, Terminology and Technical Speci-
fications, version 2.5, section VIII, part A1–A435). Further, the
AASM recommends that heart rate be collected via ECG during
PSGs, and via either ECG or PPG during HSATs (AASM
Scoring Manual, section IIA and section IX, part 1A). Thus, a
variety of signals in different combinations are used clinically.36

CReSS was designed to be device-agnostic and as such can
be deployed on signals of sufficient quality and sampling

frequency recorded by any diagnostic device, including those
that do not include a thoracic respiratory effort band.

A key strength of this study is the large, racially/ethnically
diverse sample, supporting the generalizability of algorithm
performance. The PSGs in our sample were collected in a large
number of centers with different device types, and the manual
scoring can be considered an accurate gold standard given the
experience of the technologists and the oversight provided by
the sleep reading center of the original studies. Although there
are applications of CReSS beyond the SDB population, we
sampledPSGson the basis of SDB severity, aswe anticipate this
to be the most common-use case, and found consistent algo-
rithm performance across the disease spectrum. This finding is
particularly important given that CReSS is based on the analysis
of autonomic signals, and it is known that OSA is associated
with increased sympathetic drive and altered heart rate
variability,37–39 even among asymptomatic patients with mild
SDB, and in the absence of overt cardiovascular disease.40–42

We also chose to study PSGs collected in the home rather than a
laboratory environment to reflect the intended setting of clinical
use. There is likely greater variability in signal quality in home-
vs laboratory-based studies, due to the increased possibility
of incorrect sensor placement and the absence of a sleep
technologist able to reapply sensors that become dislodged
throughout the night.

Figure 2—Accuracy of CReSS-determined sleep staging stratified by SDB severity using MESA home PSGs.

CReSS =CardioRespiratory Sleep Staging, DS = deep sleep (corresponding to N3), LS = light sleep (corresponding to N1 + N2), MESA =Multi-Ethnic Study of
Atherosclerosis, NREM = non-REM, PSG = polysomnography, REM = rapid eye movement, SDB = sleep-disordered breathing.
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Some limitations of our study should be noted. First, we did
not collect data from a clinical population, although our sam-
pling strategy was developed to ensure that the PSGs we se-
lected represented the full spectrum of SDB severity. Given the
recruitment criteria of MESA and SHHS and the timing of the
PSGs within each protocol, the average age of our sample is
somewhat higher than is typically reported for a clinical sample.
Second, as CReSS relies on heart rate variability, it was nec-
essary to exclude PSGs collected from participants with known
heart failure, atrial fibrillation, and/or a cardiac pacemaker, thus
somewhat limiting generalizability. The AASM recommends
that HSATs be used in uncomplicated patients, specifically
excluding those with heart failure,6 and therefore we do not
consider the absence of validation data in these patients to be a
major concern.Unfortunately,wewere unable to account for the
impact of other conditions associated with impaired autonomic
function, such as Parkinson disease, or the use of medications
such as beta-blockers that can cause decreases in heart rate and
changes to the lower frequency of the heart rate variability
spectrum. We also excluded PSGs with < 4 hours of data and
those with incomplete manual scoring, but again, these criteria
align with what the AASM describes as a technically adequate
diagnostic test6 and therefore represent the intended-use case.
As mentioned, we sought a large sample size in order to
support generalizability; however, in doing so we were limited
to PSGs scored by a single technologist. Given the known
interscorer variability of sleep staging,27 a more accurate
comparator would be the consensus of multiple technologists.
Finally, it was necessary to use home PSGs rather than HSATs to
validate CReSS, even though the algorithm was designed to be
used on HSAT files, as electroencephalogram/electrooculogram/
electromyogram signals were required for the gold-standard
comparator of manual sleep staging. Nevertheless, we acknowl-
edge that the performance ofCReSSmay differwhen deployed on
HSATs collected clinically, particularly if the equipment is set up
by the patient rather than a sleep technologist.

There are several applications of CReSS that warrant future
analyses. Most notably, an accurate estimate of total sleep time
will reduce the known discrepancy between the AHI (respi-
ratory events over total sleep time from PSG) and the REI
(respiratory events over monitoring time from HSAT).5 The
AASMdifferentiatesmonitoring time from recording time of an
HSAT, such that monitoring time represents recording time
minus movement artifact and estimated wake time per actig-
raphy, body position, breathing changes, and/or sleep diaries
(The AASM Manual for the Scoring of Sleep and Associated
Events: Rules, Terminology and Technical Specifications,
version 2.5).35 Many laboratories, however, simply rely on
recording time as the denominator for calculating the REI,43

which may be due to the absence of additional data from
actigraphy, a position sensor, or sleep diaries; the lack of
concrete guidelines for estimating wakefulness on the basis of
respiratory pattern; and/or the burden associated with manual
editing, particularly given the reduced reimbursement rates for
HSATs within the United States. The reduced diagnostic
sensitivity of the REI has important clinical implications due to
the increased risk of a false negative test; thus, a subsequent
validation study should focus on the diagnostic capabilities of

the CReSS-determined REI, which was considered beyond the
scope of this initial validation of algorithm performance.
Concurrently, a subsequent validation of diagnostic perfor-
mance could focus on the sensitivity and specificity of using
CReSS to identify REM sleep–related OSA, which is not
possible inmost currentHSATplatforms.Whilewehave shown
robust algorithmperformanceacross the spectrumofSDBseverity,
algorithm performance might still be improved by examining
recordingswith a larger numberofmisclassifiedepochs.Anepoch-
by-epochanalysis of cardiorespiratory signal characteristicsduring
misclassified epochs should be considered during future research,
as well as analyses of algorithm performance across diagnosed
sleep disorders in order to gain a better understanding of the al-
gorithm’s limitations and potential improvements. Finally, there
may also be applications of CReSS outside of clinical settings.
For example, there is increased interest in utilizing actigraphy
and similar tools for remote data collection in drug development
and other clinical trials.44,45 The flexibility of CReSS to be
deployed across a range of devices and minimally invasive
signal types may be advantageous as a means to enhance the
efficiency of clinical trials requiring sleep staging as a screening
tool, covariate, or endpoint, which would require additional
validation data in the intended research population(s).46

In conclusion, our data demonstrate substantial agreement
between the CReSS algorithm and manual sleep staging in a
large sample of home-based sleep studies collected fromnormal
participants as well as those with mild, moderate, and severe
SDB. The ability to estimate sleep stages from respiratory and
heart rate signals may result in improved clinical interpre-
tation of HSATs, which are increasingly used in the SDB
diagnostic pathway.

ABBREVIATIONS

AASM, American Academy of Sleep Medicine
AHI, apnea-hypopnea index
CReSS, CardioRespiratory Sleep Staging
DS, deep sleep
ECG, electrocardiography
HSAT, home sleep apnea test
LS, light sleep
MESA, Multi-Ethnic Study of Atherosclerosis
NREM, non–rapid eye movement
OSA, obstructive sleep apnea
PPG, photoplethysmography
PSG, polysomnography, polysomnograph
REI, respiratory event index
REM, rapid eye movement
SDB, sleep-disordered breathing
SHHS, Sleep Heart Health Study
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