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Study Objectives: The objectives were to develop and validate an algorithm for editing WatchPAT scoring and assess the accuracy in an unselected clinical
population as well as age and sex substrata.
Methods: Two hundred sixty-two participants were enrolled to undergoWatchPATsimultaneously with in-lab polysomnography (PSG) recordings for developing
(n = 30), optimizing (n = 62), and validating (n = 170) an algorithm to review and edit respiratory events and sleep architecture of WatchPAT recordings, which was
based on visual inspection of WatchPAT signals. Apnea-hypopnea index (AHI) and sleep indices were compared with PSG-derived and automated
WatchPAT indices.
Results: Although estimation of total sleep time (TST) was comparable between automated and manual algorithm, estimation of rapid eye movement (REM)
sleep time was markedly improved with manual editing from 0.48, 23.0 min (−43.9 to 89.8) to 0.64, 18.3 min (−32.6 to 69.1) (correlation with PSG, mean difference
[reference range] from PSG, respectively). Manual scoring also improved correlation and agreement with PSG AHI from 0.65, 2.5 events/h (−24.0 to 28.9) to
0.81, −4.5 events/h (−22.5 to 13.6) as well as concordance for categorical agreement of sleep-disordered breathing severity and concordance for detecting
severe REM-related sleep-disordered breathing. Interscorer reliabilities were excellent for TSTand AHI, while good for REM sleep time. The automated algorithm
performed better in younger than in older patients, while performed similarly betweenmen andwomenwith respect to concordance statistics. Themanual algorithm
markedly improved concordances more in older patients and women than in their counterparts.
Conclusions: Our manual editing algorithm improves correlation and agreement with PSG-derived sleep and breathing indices. Sex and age influence the
accuracy of automated analysis and the performance of manual editing on AHI concordance.
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BRIEF SUMMARY
Current knowledge/Study Rationale:WatchPAT is an approved home sleep test device based on peripheral arterial tone. Yet methods for implementing
guidelines for reviewing ofWatchPAT recordings are not available. We sought to develop and validate an algorithm for manual editingWatchPATscoring and
to assess its accuracy in both an unselected clinical population and subpopulations of different ages and sex.
Study Impact: This study shows that manual editing is reliable and improves the agreement with PSG-derived indices and that sex as well as age influences
both the accuracy of automated analysis and the performance of manual editing on AHI concordance. Its use may facilitate efficient diagnosis and severity
estimation of all patients with sleep-disordered breathing.

INTRODUCTION

Sleep-disordered breathing (SDB) is a common, increasingly
recognized medical condition worldwide and is characterized
by repeated episodes of apnea or hypopnea during sleep, leading
to daytime sleepiness and cognitive dysfunction and increased
risk of hypertension, diabetes, stroke, and cancer.1–4 An es-
sential public health priority is the diagnosis and severity es-
timation of SDB. The gold standard for the diagnosis of SDB
remains attended overnight polysomnography (PSG). Never-
theless, PSG has several disadvantages, including its rela-
tively high cost, requirement for full in-laboratory or hospital
testing, excess burden from multiple sensors, an unfamiliar

sleep environment, and backlog into the laboratory. There-
fore, practical constraints have placed greater empha-
sis on conducting home sleep apnea tests (HSAT) across
medical entities.

Many HSAT devices have been developed as an alternative
to full PSG for diagnosis of SDB. Most HSAT devices detect
respiratory events by monitoring airflow, respiration effort, and
oxygen saturation, but do not assess sleep/wake or sleep stages.
WatchPAT (Itamar Ltd, Israel) has incorporated a unique set
of algorithm to stage sleep and recognize SDB events from
patient’s oxygen saturation, sympathetic tone (peripheral
arterial tone [PAT] and heart rate changes) and actigraphy.
Several studies and meta-analyses5–9 have demonstrated its
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accuracy of diagnosing SDB, leading to a recent approval for its
use as a HSAT device by the American Academy of Sleep
Medicine (AASM).Nonetheless, general adoption ofWatchPAT
in clinical routine has been hindered by the use of unconventional
signals (no flow, respiratory effort, or electroencephalography),
making it difficult for physicians and respiratory technologists to
review, verify, and interpret WatchPAT recordings. Moreover,
the aforementioned validation studies did not reflect the spec-
trum of patients presenting to clinical sleep centers, thus raising
questions about its generalizability and accuracy in specific patient
populations such as older patients or those with comorbidities.

Recently, we demonstrated that women differ from men in
their sleep apnea phenotype and compensatory responses to
upper airway obstruction during sleep.10 Similarly, aging can
also affect the sleep apnea phenotype, with older patients often
having more central apneas due to frequent sleep disruptions
and cardiovascular comorbidities.11 In addition, there are sex
differences in autonomic responses to respiratory events,12 and
aging has been reported to be associated with impairments in
vascular tone, decreased overall heart rate variability, and
impairment in cardiac control mechanisms,13 all of which could
influence the performance of WatchPAT in these populations.

The primary objectives of the current study were to develop
and validate an approach for reviewing and editing automated
WatchPAT scoring and to assess the accuracy of determining
the severity of SDB in both an unselected clinical population
and subpopulations of different ages and sexes. We therefore
conductedWatchPAT recordings in parallel with in-lab PSG to
optimize and validate an algorithm for editing automated
WatchPAT scoring and compared WatchPAT automated and
manual editing with standard PSG scoring. We hypothesized
that visual editing of automated WatchPAT scoring would be
reliable and accurate yet time-efficient.

METHODS

Participants
Patients over 18 years of age with suspected SDB were pro-
spectively enrolled between January 2017 and September 2017.
All patients, giving informed consent, wore WatchPAT 200 si-
multaneously with their in-lab PSG in a time-synchronization
manner. Clinical and demographic data including comorbidity
and medication were also collected. The study was approved by
the JohnsHopkins Institutional ReviewBoard on human research.

Sleep study

Polysomnography

Standard in-lab PSG was performed using a computerized
polysomnographic device (Embla system, Flaga HF, Iceland),
with the following channels: electrooculography, electrocar-
diography, electroencephalography (C2-A1, C3-A2, O2-A1,
O1-A2, F4-A1, F3-A2), submental and tibial electromyogra-
phy, airflow (thermistor, nasal pressure transducer), chest and
abdominal motion, oxygen saturation (pulse oximetry), snoring
microphone, and body position sensor. All the sleep studies
were manually interpreted by sleep technicians according to the

standard criteria, as outlined in The AASM Manual for the
Scoring of Sleep and Associated Events: Rules, Terminology
and Technical Specifications14 and were reviewed by certified
physicians. In particular, an apneawas scored if airflowwas absent
for 10 seconds and a hypopnea if airflow dropped by ≥ 30% of
pre-event baseline in association with a desaturation of 3% or
an arousal. Both the technician and the sleep physician were
blinded to the WatchPAT signals to eliminate bias.

WatchPAT 200

Signals recorded by WatchPAT included the PAT signal (PAT
probe), pulse rate (PAT signal), oxyhemoglobin saturation
(pulse oximetry), wrist activity (actigraphy), and snoring
(microphone). WatchPAT signals were imported into REM-
logic for reviewing and editing. Each WatchPAT editing
processwas thenentered intoadatabase fordevelopinganalgorithm
and testing its accuracy compared with PSG scoring, as outlined
below in Study protocol. According to the automated algorithm,
sleep/wake detection was based on assessment of movements and
their occurrences (periodic or sporadic) while the sleep stage de-
tections (rapid eye movement, non-REM [NREM] sleep) were
based on the spectral and temporal components of the PAT signal.15

A respiratory event was scored based on changes in PAT signal
amplitude, pulse rate, and oxygen saturation as outlined below.

Manual algorithm for verifying and editing automated
WatchPAT scoring
A process was developed to further refine scoring by editing
WatchPAT automated sleep staging and respiratory events
scoring as follows.

Manual algorithm for sleep staging

The amplitude and variability in pulse rate and PAT signals
changewith sleep stages as previously validated.16,17 The visual
inspection of these 2 signals allowed the user to check the
plausibility of Wake and REM detection. The following pro-
cedure was adopted for reviewing the hypnogram in a 30- to
60-min time window.

1. WatchPAT’s graphic display was reviewed and
emblematic periods of Wake and REM were identified
based on characteristics of Wake and REM sleep as
detailed in Table S1 in the supplemental material.

2. All Wake and REM periods were compared with
aforementioned emblematic periods.

3. Sleep stages were corrected if PAT, pulse rate, and
oximeter tracing did not show the typical features as
outlined in Table S1. If a section of the recording did
not definitely represent REM or Wake, it was revised
to NREM sleep.

Manual algorithm for respiratory events scoring

Apneas and hypopneas are usually terminated with a sympa-
thetic discharge. This discharge is characterized by a reciprocal
pattern in PAT amplitude and pulse rate. This pattern consists
of a decrease in PATamplitude and concordant increase in pulse
rate (as shown in Figure S1 in the supplemental material). A
development sample of patients’ recordings was analyzed vi-
sually and yielded the following procedure for editing
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respiratory events in a 10- to 15-min time window in a val-
idation sample.

We developed and tested 2 algorithms (Figure S2 and
Figure S3):

AlgorithmA:The criteria as following are applicable to both
NREM and REM sleep.

1. SDB events were deleted if:
i. The event did not have the typical pattern of PAT

amplitude reduction coinciding with an increase in
pulse rate.

ii. The reciprocal pattern was associated with a
positional change.

iii. The reciprocal pattern was associated with a
desaturation of < 3% or no change in snoring pattern
(Figure S2).

2. SDB events were added if:
A reciprocal pattern was detected visually along with
a desaturation of ≥ 4% (Figure S3).

Algorithm B: The criteria mentioned above are only ap-
plicable to NREM sleep.

In REM sleep, SDB events were added or retained if any
non-artifactual desaturation of ≥ 4%was present, regardless of
whether a reciprocal pattern was also present.

Study protocol
The manual algorithm was optimized with 2 scorers (Z.Z. and
H.S.) using a development set of 30 patients. To allow a wide
range of SDB severities, the development set was comprised of
30 patients with evenly distributed WatchPAT oxygen desa-
turation index (ODI). Then the optimal algorithm was further
tested with 2 scorers (Z.Z. and M.S.) using a training set of 62
patients. At last, the algorithmwas validatedwith 3 scorer (Z.Z.,
H.S., and J.E) using another independent validation set of 170
patients meeting the same inclusion criteria.

Statistical analysis
Data were summarized as means ± standard deviation for
continuous variables and as frequencies (percentage) for categorical
variables. Spearman correlation coefficient andBland-Altman plots
were used to assess correlation and agreement for TST, REM sleep
time, andAHIbetweenPSGandWatchPAT, respectively.Receiver
operator characteristic curve and area under the curvewere assessed
using an AHI cutoff of 5, 15, and 30 events/h on PSG and further
compared using nonparametric and binormal methods to explore
the diagnostic values of automated and manual scoring on
WatchPAT. Sensitivity, specificity, likelihood ratios, and Youden
indexwerecalculatedusing2×2 contingency tables. TheYouden
index, defined as “sensitivity + specificity − 1,” was used to
determine the optimal cut-off points in each analysis, where equal
weight was given to the sensitivity and specificity of the test.

The Kendall τ-b statistic was used to evaluate concordance
of severity of AHI between PSG andWatchPAT at cutoffs of 5,
10, 15, 20, 25, and 30 events/h, with concordance being ex-
cellent (0.80–1.00), very good (0.60–0.79), good (0.40–0.59),
fair (0.20–0.39), and poor (0.00–0.19). Intraclass correlation
coefficient was used to estimated interscorer reliability ofmanual
scoring, with agreement being very strong (0.90–1.00), strong

(0.70–0.89), moderate (0.5–0.69), low (0.26–0.49), and little
(0.00–0.25).18 Statistical analyseswere performed usingSTATA
Version 14.0 (College Station, TX). Differences were considered
statistically significant at the 2-sided P < .05 level.

RESULTS

Participant characteristics and study flow
A total of 1,373 patients met eligibility criteria, of which 400
(29.1%) agreed to participate in this study and completed the
simultaneous PSG and WatchPAT monitoring. Data from 138
participantswere rejected because ofWatchPAT total recording
time (TRT) < 6 hours (n = 57), PSG total sleep time (TST) < 4
hours (n = 48), difference of TRT between WatchPAT and
PSG > 1 hour (n = 63), proportion of total artifact time in TRT ≥
0.3 or poor recording quality of WatchPAT or PSG recording
(defined as a substantial portion being not able to be used to
score sleep and respiratory events) (n = 36). Sixty-six cases met
more than one rejection criteria. The final population for
analysis (n = 262) had an age of 49.0 ± 14.8 years, body mass
index of 36.1 ± 9.1 kg/m2, and AHI of 24.3 ± 21.6 events/h and
was divided into development set (n = 30), training set (n = 62),
and validation set (n = 170) (Figure 1). Table 1 shows the
demographic and clinical characteristics of study participants
in validation set. There were 77 men and 93 women, 26 par-
ticipants with an age ≥ 65 years, and 144 with an age < 65 years.
Our study sample did not include any patients with severe heart
failure or decompensated lung or kidney disease as outlined by
recent AASM contraindications for HSATs.19

Development and validation of sleep time assessment
Table 2 shows that TST scored automatically was minimally
different from PSG-derived TST. The manual editing of TST
decreased the mean difference from 15.8 to 10.6 minutes at an
average PSG-derived TST of 357.5 minutes with interscorer
correlation of 0.94. The reference range of difference from
PSG data and correlation with PSG data did not change sub-
stantially. In contrast, manual scoring of REM sleep time im-
proved the correlation with PSG data and narrowed the
reference range compared with automated scoring. The mean
difference in REM sleep time decreased from 23.0 to 18.3
minutes at an average PSG-derived REM sleep time of 61.0
minutes. The interscorer correlation for manual REM sleep
stagingwas 0.69. Thus, although estimation of TSTwas slightly
affected by the editing process, estimation of REM sleep time
was markedly improved, as confirmed in the Bland-Altman
plots in Figure 2.

Development and validation of AHI editing algorithm
Table 3 presents the interscorer reliability of manually scored
AHI from WatchPAT for the development, training, and val-
idation set. It also shows the mean difference, reference range,
and correlation of AHI between PSG and WatchPAT. First, in
the development set, manual algorithmBdemonstrated a higher
correlation and better agreement with PSG than manual algo-
rithm A. Second, using the larger training set, we found that
algorithm B improved the correlation and agreement with PSG
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compared with the automated algorithm and maintained the
even higher interscorer correlation. Finally, in the validation set,
the interscorer correlation was markedly higher than those in
the development and training set. Although the automated
scoring had a comparable AHI compared with PSG, the cor-
relation was still rather low. In contrast, the manually edited
AHI of all scorers slightly reduced the overall AHI but increased
the correlation with the PSG-derived AHI and reduced the
reference range, which is also shown in the Bland-Altman plots
in Figure 2.

Manual scoring of WatchPAT significantly increased the
area under the curve for classifying overall, moderate-severe,
and severe SDB compared with automated scoring (0.858,
0.923, 0.909 and 0.766, 0.829, 0.831, respectively). (Figure 3)
Sensitivity and specificity of diagnosis were better balanced

and even improvedwith the originalAHI cutoff values aswell as
the optimal AHI cutoff values (Table S2).

The concordance statistics for 2 categories of AHI severity
(AHI cutoff value = 5, 10, 15, 20, 25, and 30 events/h, re-
spectively) are shown in Figure 4. Compared with automated
scoring ofWatchPAT,manual scoring had higher concordances
at all AHI cutoff values, particularly at cutoff of 5, 20, 25 and
30 events/h.

The manual editing of respiratory events in REM sleep by all
scorers substantially reduced the mean difference of REM AHI
from 5.1 to −2.8 events/h, with an interscorer correlation of
0.86. At cutoff values for REM AHI of 5 and 15 events/h, no
significant differences emerged in concordance between
automated and manual scoring algorithm. In contrast, the
concordance for detecting severe REM-related sleep apnea

Figure 1—Study protocol and flow diagram.

PSG = polysomnography, TAT = total artifact time, TRT = total recording time, TST = total sleep time.
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at a REM AHI cutoff of 30 events/h increased with manual
editing from 0.44 to 0.67.

Effect of age and sex on WatchPAT performance
The effects of age and sex on automatically and manually
derived AHI are shown in Figure 5. For the automated algo-
rithm, the concordance statistics in the older participants were
fair to good. The manual algorithm markedly improved the
concordances at most AHI cutoff values to a good to very good
concordance, although there was no difference at the cutoff
value of 30 events/h (Figure 5, top right). In the younger
participants, AHI concordance for the automated algorithmwas
already good for most cutoff values and the manual editing
increased the concordance to very good for all but the AHI
cutoff of 5 events/h (Figure 5, top left). A similar differencewas
also observed between sexes. Although the automated algo-
rithm performed similarly betweenmen and women, the impact
of manual editing was greater in women than that in men
(Figure 5, bottom).

DISCUSSION

In comparing the results of automated and manual WatchPAT
scoring with PSG in an unselected clinical population as well as
age and sex substrata,we generated several novelfindings. First,
our editing algorithm for sleep staging and respiratory events
scoring generated moderate to very strong interscorer reli-
abilities. Second, although the estimation of TST was com-
parable between automated and manual algorithm, the
estimation of REM sleep time was markedly improved by
manual editing. Third, manual scoring improved the correlation
and agreement with PSG-derived AHI and the concordance
statistic for categorical agreement for all AHI thresholds.
Fourth, automated algorithms performed better in younger than
in older participants, while it performed similarly between men
and women with respect to concordance statistics. Manual al-
gorithms markedly improved concordances more in older
participants and women than in their counterparts. Our findings
lead us to conclude that manual editing ofWatchPAT scoring is
reliable and improves the agreement with PSG-derived sleep
and apnea and hypopnea indices.

Algorithm development
Over the years,WatchPAThas become awell-validated,widely
used HSAT device. Despite extensive validation of its auto-
mated algorithms for sleep staging and sleep apnea scoring, the
AASM requires physicians to review and evaluate the accuracy
of sleep study reports.20 We adopted a pragmatic approach to
facilitate this process. First, we leveraged time efficiencies from
automated scoring to streamline the editing process. Visual
oversight yielded modest improvements in estimations of TST
and REM sleep time compared with PSG. Second, SDB events
were critically reviewed while imposing specific criteria for
keeping, deleting, or adding these events. Our approach em-
phasized the recognition of sympathetic responses (“reciprocal
pattern”) to respiratory disturbances including oxyhemoglobin
desaturation and snoring while rejecting responses that were

Table 1—Demographic and clinical characteristics for study
participants in validation set.

Demographic/Clinical Characteristics Mean ± SD or n (%)

Age, y 48.4 ± 14.9

≥ 65 y 26 (15.3)

Men 77 (45.3)

BMI (kg/m2) 35.5 ± 9.3

AHI (events/h) 20.2 ± 18.9

≥5 135 (79.4)

≥15 82 (48.2)

≥30 43 (25.3)

Comorbidity

Hypertension 59 (34.7)

Diabetes 38 (22.4)

Arrhythmia

Atrial fibrillation 4 (2.4)

Atrial flutter 2 (1.2)

Tachy-brady syndrome 1 (0.6)

Premature atrial contractions 1 (0.6)

Premature ventricular contractions 3 (1.8)

Pacemaker 1 (0.6)

Insomnia 15 (8.8)

Restless legs syndrome/Periodic
limb movements

8 (4.7)

Coronary artery disease 13 (7.6)

Heart failure 6 (3.5)

Chronic obstructive pulmonary disease 8 (4.7)

Cerebrovascular disease 6 (3.5)

Depression 2 (1.2)

Peripheral vascular disease 2 (1.2)

Circadian rhythm sleep disorder 6 (3.5)

Hypothyroidism 8 (4.7)

Medication

Beta-blocker 15 (8.8)

α1-Adrenergic antagonist 3 (1.8)

Opiates 11 (6.5)

Antidepressant 22 (12.9)

Angiotensin-converting
enzyme inhibitor

13 (7.6)

Angiotensin receptor blocker 10 (5.9)

Calcium channel blocker 7 (4.1)

Diltiazem 3 (1.8)

Diuretic 15 (8.8)

Benzodiazepine 8 (4.7)

Antidiabetic 12 (7.1)

Levothyroxine 8 (4.7)

Data are presented as means ± standard deviation. AHI = apnea-
hypopnea index, BMI = body mass index.
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related to movement artifacts. Our algorithm was specifically
designed to detect apnea and hypopnea events that were
characterized by physiologic markers for desaturation and
arousal, rather than respiratory effort-related arousals with
marginal alterations in these markers. This approach led to
significant improvements in classifying patients along the
spectrum from mild, moderate, and severe sleep apnea com-
pared with automated WatchPAT results. In circumventing de

novo scoring of the native recording, wewere able to streamline
the visual editing of automated scores and improve agreement
with gold standard PSG.

Estimation of sleep staging
We also assessed the accuracy of detecting TST and REM sleep
time in the current study. Whereas the automated detection of
TST is based on actigraphy, the REM detection is based on a

Table 2—Agreement and correlation of TST and REM sleep time with PSG and interscorer reliability in validation set.

Algorithm Scorer
Total Sleep Time, min REM Sleep Time, min

ICC Agreement Spearman’s correlation ICC Agreement Spearman’s correlation

Manual (B)

R1

0.94

7.3 (−64.3–79.0) .73

0.69

15.1 (−44.2–74.4) .53

R2 9.4 (−63.4–82.3) .72 13.7 (−38.1–65.6) .68

R4 15.2 (−7.6–87.9) .72 26.0 (−37.4–89.4) .52

Manuala 10.6 (−58.9–80.2) .73 18.3 (−32.6–69.1) .64

Automated 15.8 (−57.7–89.2) .70 23.0 (−43.9–89.8) .48

Data are presented as mean difference (reference range). aAverage of R1, R2, and R4. ICC= intraclass correlation coefficient, PSG = polysomnography,
REM = rapid eye movement. TST = total sleep time.

Figure 2—Bland–Altman plots for automated and manual scoring of REM sleep time and AHI in validation set.

For REM sleep time, manual scoring (top right) reduced the mean difference (dashed line) from PSG and narrowed the reference range (shaded area)
compared with automated scoring (top left). For AHI, manual scoring (bottom right) also reduced the reference range (shaded area) compared with automated
scoring (bottom left). AHI = apnea-hypopnea index, auto = automated, PSG = polysomnography, REM = rapid eye movement.
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Table 3—Agreement and correlation of AHI with PSG and interscorer reliability based on automated or manual algorithm.

Data Set Algorithm Scorer ICC Agreement Spearman’s Correlation

Development (n = 30)

Automated 5.4 (−20.9 to 31.7) .79

Manual (A)
R1

0.84
−6.8 (−29.1 to 15.5) .86

R2 −4.6 (−30.9 to 21.7) .83

Manual (B)
R1

0.87
−6.0 (−27.7 to 15.7) .86

R2 −3.7 (−27.0 to 19.7) .84

Training (n = 62)

Automated 5.4 (−26.0 to 36.7) .75

Manual (B)
R1

0.93
−3.6 (−24.5 to 17.4) .88

R3 2.9 (−25.3 to 31.0) .78

Validation (n = 170)

Automated 2.5 (−24.0 to 28.9) .65

Manual (B)

R1

0.96

−4.6 (−22.8 to 13.6) .81

R2 −4.1 (−24.6 to 16.5) .77

R4 −4.7 (−22.0 to 12.6) .84

Manualb −4.5 (−22.5 to 13.6) .81

Data are presented as mean difference (reference range). bAverage of R1, R2, and R4. AHI = apnea-hypopnea index, ICC = intraclass correlation coefficient,
PSG = polysomnography.

Figure 3—Receiver operator characteristic (ROC) curves using an apnea-hypopnea index (AHI) cutoff of 5, 15, and 30 events/h on
the polysomnography (PSG) (top, middle, and bottom, respectively).
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number of features derived from spectral and temporal com-
ponents of the heart rate andPAT signal.15 For the reviewing and
editing ofTST andREMsleep time,we inspected allWatchPAT
signals, including snoring, oxygen saturation, actigraphy, PAT,
and pulse rate. Although the automated estimation of TST
already differed minimally (+15.8 minutes with a mean sleep
time of 357.5 minutes: + 4.4%), the editing process lowered the
TST difference by another 5.2 minutes, decreasing any over-
estimation of TST to less than 3%. Estimation of REM sleep
time was also improved by about 5 minutes with the editing
process. Although the interscorer correlation was only moder-
ate, the result was essentially within the variability range re-
ported in some studies comparing registered PSG scorers21 and
similar to the agreement reported in comparisons between
automated PSG scoring and manual scoring.22 Given the av-
erage REM sleep time of approximately 1 hour, this im-
provement had a more significant impact on accuracy. Thus,
estimations of TST and REM sleep time were well within
the acceptable error rate for determining these parameters
on PSG.

Estimation of AHI
Our method for recognizing respiratory events is based on
detecting a visible arousal response as defined by the presence
of both a substantial reduction in PAT amplitude and a rise in
pulse rate (which we call a reciprocal pattern). This response
often terminates apneic and hypopneic events during NREM
sleep and remains an initial pivotal feature required for con-
firming or rejecting events in NREM sleep. We discovered that
this reciprocal pattern was less pronounced, however, during
REM sleep due to an overall reduction in PAT amplitude in this
sleep stage (“floor effect”). Nonetheless, the sensitivity in
detecting respiratory events in REM sleep was maintained
by keeping automatically scored events and adding events

whenever accompanied by a 4% desaturation, even in the ab-
sence of the reciprocal pattern. This modification (algorithm B)
achieved a higher correlation and better agreement with AHI
on PSG than both algorithm A and the automated algorithm. In
the validation set, we further demonstrated that algorithm B
remained reliable and valid, yet simple to execute. More im-
portantly, compared with automated scoring of WatchPAT,
manual scoring with algorithm B produced better concor-
dances across the entire range of AHI severity cutoffs. Thus,
visual editing of the automated WatchPAT scoring improved
the AHI concordance with PSG substantially. Moreover, the
significancewas also highlighted by the determination of severe
REM related sleep apnea (REMAHI ≥ 30 events/h), which had
a very good concordance of 0.67 and a strong interscorer
correlation of 0.86. Thus, even the detection of severe REM-
related sleep apnea was within standard margins of error for
AHI in REM sleep.

It is noteworthy that, although PSG is a standard for sleep
testing, it is not a perfect test in several ways. PSG scoring
itself is subject to major variability, night-to-night in the same
center, across sleep centers, and between scorers. In our study,
only a single PSG night and WatchPAT night study were
compared. PSG scoring included hypopneas of ≥ 3% desatu-
ration and ≥ 30% NC pressure drop. This definition may score
“physiologic” hypopneas compared with possibly patho-
logical hypopneas associated with autonomic activation per
PAT. It would be worthwhile to compare the variability of
AHI between 2 nights of PSG and 2 if not even 3 nights of
WatchPAT studies in the home, particularly in patients with
mild sleep apnea inwhom the night to night variabilitymay then
affect the disease category. In addition, such a study would not
only show the value repeated sleep studies for making the
diagnosis, but also demonstrate the value of single-
night PSG.

Figure 4—Concordance between PSG and WatchPAT in the validation set at specific AHI cutoff values.

Compared with automated scoring of WatchPAT, manual scoring had higher concordances at all AHI cutoff values, particularly at cutoff values of 5, 20, 25, and
30 events/h. AHI = apnea-hypopnea index, PSG = polysomnography.
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Effect of sex and age on performance
(unselected clinical population)
We supposed that the algorithms to detect sleep apnea would
work better in men and in younger patients due to the pre-
ponderance of men and younger participants in previous vali-
dation studies. Our clinical population consisted of a high
percentage of women (55%), thus allowing us to assess the
effect of sex on scoring concordance. Strikingly, we found that
the performance of the automated algorithm was similar be-
tween women and men, yet the manual editing process im-
proved the concordancemore inwomen than inmen. In contrast,
younger patients had better concordances for the automated
and manual algorithm than older patients. Compared with
automated algorithm, manual editing markedly improved the
concordances in the older patients at most AHI cutoff values to a
good to very good concordance, which becomes particularly
relevant for testing an aging population. The reasons for sex
and age differences in concordance may be related to differences
in vascular compliance and homeostasis due to hormonal, neural,
or anatomic differences as well as increased comorbidities and
medication use in older patients.10–13

We, however, recognize that there was a paucity of older
patients, with only 25 (15%), and thus it is more difficult to
generalize about accuracy of scoring methods, especially when
it comes to the subanalysis by AHI severity. We, however,
believe that our current subanalysis will build the foundation
for future validation studies of HSATs in an older patient
population. Nevertheless, women and older patients often exhibit
different SDB patterns that may have further influenced the per-
formance of determining respiratory events either by automated or
manual editing.

Strengths and weaknesses
One of the strengths of this study is that it relied on a large,
unselected, sleep clinic-based cohort with PSG recordings
using up-to-date recording techniques. Recordings were ana-
lyzed manually by board-certified technicians and physicians,
which will likely increase its applicability and generalizability
in clinical real-world settings. Moreover, both technicians
and physicians were blinded to WatchPAT signals, which
helped reduce bias. Another advantage was that we validated
an independent data set, and demonstrated high efficiency,

Figure 5—Concordance between PSG and WatchPAT at specific AHI cutoff values in subpopulations of different age and sex.

The automated algorithm performed better in younger patients (top left) than in older patients (top right), while it performed similarly in men (bottom left) and
women (bottom right) with respect to concordance statistics. The manual algorithm markedly improved concordance in the older patients and in the women
compared with younger patient and men subgroups. AHI = apnea-hypopnea index, PSG = polysomnography.
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reliability, and validity of the manual algorithm. Although the
mean differences shown between TST, REM scoring of
WatchPAT auto versus manual versus PSG are small, we
identified several studies that demonstrated either a marked
overestimation or underestimation of the automatedAHI versus
the PSG or the manual edited AHI.We did not find a systematic
reason for this discrepancy. With visual editing, we markedly
narrowed the reference range to −22.5 to 13.6 as shown in
Table 3 and Figure 2 and improved the concordance with
PSG for categorical agreement of SDB severity. In conclusion,
the user of the WatchPAT must be aware that outliers exist
and that manual editing can identify and correct these re-
ports adequately.

Nevertheless, some limitations of the study also deserve
mention. First, PSGs were not double-scored, thereby pre-
venting us from calculating interscorer correlation and an epoch
by epoch comparison between PSG andWatchPAT results. Yet
our technicians and physicians demonstrated consistent scoring
performance on standard monthly interscorer reliability exer-
cises in our laboratory, and the scoring approach modeled that
practiced in the clinical setting. Second,we recognize thatmany
patients were excluded from analysis in our study to compare
recordings from WatchPAT with PSG. We did not a priori
exclude patients with a primary complaint of difficulties ini-
tiating ormaintaining sleep. Therewere 25 patients that slept < 3
hours and 48 patients whose overall sleep time was between 3
and 4 hours. The WatchPAT automated algorithm requires a
sleep time of > 3 hours and 30 minutes of REM sleep for
calculating NREM/REM distribution and the AHI during
NREMandREMaccordingly. Thus, participantswere excluded
post hoc as we could not compare results of the automated
analysis with the edited and PSG indices. Third, our study is
a real-world study and we want to develop a new algorithm
applicable to clinical work no matter if the patient is OSA-
dominant or central sleep apnea-dominant. We therefore refer
to “SDB” or “sleep apnea” from the beginning to the end instead
of “OSA.” Future studies are required to validate if the
WatchPAT can accurately differentiate between central and
obstructive sleep-disordered events. Fourth, despite marked
improvements in overall accuracy ofWatchPAT sleep and AHI
indices, ~10% of the studies showed either a marked overes-
timation or underestimation of AHI compared with PSG
scoring. Nevertheless, all of these studies could be identified
by experts trained to review WatchPAT signals. Fifth, our
manual method was based on recognizing the sympathetic
response to respiratory events, as a marker for cortical and
subcortical “arousals,” although AASM criteria only use cor-
tical arousals to define hypopneas.

Implications
Our findings have several clinical and research implications.
First, WatchPAT provides accurate estimations of TST and
REM sleep time. SDB events are detected based on either a
significant oxygen desaturation or a visible arousal response,
both of which help characterize acute pathophysiologic re-
sponses to SDB episodes while improving the diagnostic ac-
curacy in determining AHI. Second, the estimations of TST
andREM sleep time also help characterize disturbances in sleep

architecture that may be independent of sleep apneic activity.
Third, REM sleep recognition makes it possible to identify
patients with predominant REM-related sleep apnea, which
may be important in risk-stratifying patients prior to surgical
procedures or in determining the effect of REM-related sleep
apnea on neurocognitive and cardiovascular function. Finally,
the time for reviewing and editing the hypnogram and AHI of the
WatchPAT averaged ~10–15 minutes. Thus, the time efficiency
and improvements in accuracy promise to reduce operational
costs in larger clinical or pharmacological research studies.
Thus, our data demonstrate that manual editing of WatchPAT
automated scoring is reliable and improves agreement with
PSG-derived sleep and apnea and hypopnea indices across age
and sex strata.

ABBREVIATIONS

AASM, American Academy of Sleep Medicine
AHI, apnea-hypopnea index
HSAT, home sleep apnea test
NREM, non-rapid eye movement
ODI, oxygen desaturation index
PAT, peripheral arterial tone
PSG, polysomnography
REM, rapid eye movement
SDB, sleep-disordered breathing
TRT, total recording time
TST, total sleep time
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