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Study Objectives: Sleep-wake dysfunction is bidirectionally associated with the pathogenesis and evolution of stroke. Longitudinal and prospective
measurement of sleep after chronic stroke remains poorly characterized because of a lack of validated objective and ambulatory sleep measurement tools in
neurological populations. This study aimed to validate a multisensor sleep monitor, the SenseWear Armband (SWA), in patients with ischemic stroke and control
patients using at-home polysomnography.
Methods: Twenty-eight radiologically confirmed patients with ischemic stroke (aged 69.61 ± 7.35 years; mean = 4.1 years poststroke) and 16 control patients
(aged 73.75 ± 7.10 years) underwent overnight at-home polysomnography in tandem with the SWA. Lin’s concordance correlation coefficient and reduced major
axis regressions were employed to assess concordance of SWA vs polysomnography-measured total sleep time, sleep efficiency, sleep onset latency, and wake
after sleep onset. Subsequently, data were converted to 30-second epochs to match at-home polysomnography. Epoch-by-epoch agreement between
SWA and at-home polysomnography was estimated using crude agreement, Cohen’s kappa, sensitivity, and specificity.
Results: Total sleep time was the most robustly quantified sleep-wake variable (concordance correlation coefficient = 0.49). The SWA performed poorest
for sleep measures requiring discrimination of wakefulness (sleep onset latency; concordance correlation coefficient = 0.16). The sensitivity of the SWA was
high (95.90%) for patients with stroke and for control patients (95.70%). The specificity of the SWA was fair-moderate for patients with stroke (40.45%) and
moderate for control patients (45.60%). Epoch-by-epoch agreement rate was fair (78%) in patients with stroke and fair (74%) in controls.
Conclusions: The SWA shows promise as an ambulatory tool to estimate macro parameters of sleep-wake; however, agreement at an epoch level is only
moderate-fair. Use of the SWA warrants caution when it is used as a diagnostic tool or in populations with significant sleep-wake fragmentation.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Longitudinal and ambulatory measurement of sleep in patients with stroke is vital to further establish the
bidirectional impact of sleep-wake dysfunction in stroke. It remains unclear whether noninvasive and multisensor ambulatory sleep-wake monitors can
accurately and reliably detect sleep-wake parameters in stroke populations.
Study Impact: The SenseWear Armband shows promise as an ambulatory sleep-wake measurement tool. However, caution is warranted when
using the SenseWear Armband as a diagnostic tool or in clinical populations with significant sleep-wake fragmentation.

INTRODUCTION

Stroke is a leading cause of long-term disability and death
worldwide.1 Sleep-wake dysfunction is bidirectionally asso-
ciated with the pathogenesis and evolution of stroke andmay be
a keymodifiable risk factor for stroke.2,3 Excessively long sleep
duration characterized by > 8 hours of sleep is an independent
risk factor and consequence of ischemic stroke.4,5 Inversely,
sleep efficiency is significantly reduced in patients with stroke
and negatively correlatedwith poststroke recovery.6Despite the
rise in interest in sleep-wake dysfunction as a modifiable risk
factor for stroke, the tools used to measure sleep-wake after

stroke are heterogeneous.2 Poor validation methodologies of
existing wearable sleep technology have limited their use in
larger prospective studies conducted in ambulatory settings.7

Polysomnography (PSG), despite being recognized as the
gold standard for sleep-wake detection, is intrusive and is
generally conducted for only 1–5 nights.8 The use of PSG is
therefore unsuitable for prospective cohort studies requiring
longitudinal sleep-wake measurement. Sleep diaries and vali-
dated sleep-wake questionnaires are self-reported and poten-
tially unreliable in populationswith neurological disease,where
sleep-state misperception may be a feature of sleep-wake
pathology.9 The development and validation of ambulatory,
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objective, and noninvasive sleep-wake monitors is warranted.
Recent guidelines have established a set of best practices for vali-
dationstudies.8Whetherambulatorysleep-wakemonitorsaccurately
and reliablydetect sleep-wakestates in strokepopulations isunclear,
particularly given that patients with stroke often display abnormal
sleep architecture and a higher prevalence of sleep disorders.6

Traditional sleep-wake wearables solely utilize accelerometry
to estimate sleep via micromovement detection. Recent advances
in wearable technologies have enabled the use of multisensor
arrays to robustly quantify sleep-wake parameters. For exam-
ple, the BodyMedia SenseWear Armband (SWA; BodyMedia
Inc, Pittsburgh, PA) utilizes a dual-axis accelerometer, galvanic
skin response sensors, heat flux sensors, skin temperature
sensors, and a near-body ambient temperature sensor to provide
a more comprehensive breadth of physiological observations to
enhance the accuracy of sleep estimation.10 Previous validation of
the SWAvsPSGhas been conducted in healthyparticipants,11,12

adolescents,13 and patients with OSA,14 but not in clinical pop-
ulations with neurological disorders. The present validation
studywas designed to assess the clinical utility of the SWAas a
sleepmonitor vs ambulatory at-homepolysomnography (home-
PSG) in participants with stroke and healthy control patients by
addressing the agreement between the SWA and home-PSG at
both the patient and epoch-by-epoch level.

METHODS

Participants
Participants were recruited from the Cognition and Neocortical
Volume After Stroke (CANVAS) study cohort. The study in-
cludes participants with first-ever or recurrent ischemic stroke
within any circulation15 or etiology16 and no history of dementia
or another neurodegenerative condition. The protocol and in-
clusion criteria for control participants were identical to those
for participants with stroke, except that control participants did
not have a history of stroke. Patients were recruited from 3
hospitals in Melbourne, Australia: Austin Health, Eastern
Health, andMelbourneHealth. The studywas approved by each
hospital’s human research ethics committee in line with the
Declaration of Helsinki.17 Patients with untreated or previously
diagnosedOSAwere excluded. Patientswith narcolepsy and those
taking medications with a primary effect on sleep architecture, as
measured by electroencephalogram (EEG) during the time of the
study, were excluded. Ischemic stroke was a clinical diagnosis
and radiologically confirmed by clinical computed tomography or
magnetic resonance imaging during acute hospitalization for the
event. Patients were excluded if they were unable to undergo a 3T
magnetic resonance imaging scan, were unable to provide in-
formed consent because of severe aphasia, were diagnosed with
transient ischemic attack or failed to have their stroke confirmedby
computed tomography or magnetic resonance imaging, or had
significant medical comorbidities precluding participation in
cognitive-behavioral testing. Participants were recruited, on av-
erage, 4.10 years poststroke (standard deviation = 0.91).

Sleep-wake protocol
The protocol for the present study was split into 2 timepoints.
During timepoint 1, participants wore the SWA and completed

a 16-item sleep diary for at least 1 week. Timepoint 1 sleep data
provided an “average” sleep-day used to schedule partici-
pants’ home-PSG examination. During timepoint 2, partici-
pants were fitted with an ambulatory home-PSG device (Somté
PSG version 2.0; Compumedics Limited, Abbotsford, Victoria,
Australia) and wore the SWA in tandem for 1 night at home.
Upon returning from timepoint 2, participants completed an
array of demographic, mood, and sleep-circadian questionnaires.

TheSWAwasattachedtoparticipants’upper right armaccording
to manufacturer recommendations. The SWA utilizes a com-
bination of accelerometry, near-body ambient skin temperature,
heat flux, and galvanic skin response to measure sleep-wake.
The accelerometer includes a microelectromechanical sensor,
which has a scale of ±2 g and a sensitivity of 167 mV/g. With
respect to sleep duration, raw data output is binary (ie, 1 = sleeping,
0 = awake). Sleep-wake averages from timepoint 2 were
extracted using BodyMedia software (InnerView; BodyMedia,
Pittsburgh, PA) and used as primary validation outcome variables.

Home-PSG was conducted by a trained sleep scientist in
accordance with The AASM Manual for the Scoring of Sleep
and Associated Events: Rules, Terminology and Technical
Specifications, version 2.618 and the 2020 Australia and New
Zealand Sleep Science Association (ANZSSA) and Australasian
Sleep Association (ASA) guidelines.19 Profusion PSG Sleep
Software (V4.5Build 468; Compumedics Limited, Abbotsford,
Victoria, Australia) was used to analyze sleep. Six-lead
EEG placement was used in accordance to the interna-
tional 10–20 system (F4-M1, C4-M1, O2-M1; F3-M2, C3-M2,
O1-M2). For patients with stroke, ipsilesional and contrale-
sional hemisphere EEG were scored independently because
of the potential effects of infarction and regional brain volume
loss on unihemispheric sleep.5,20

Sleep and respiratory scoring were completed by an expe-
rienced research-grade sleep scientist. The scientist remained
blinded to the healthy vs lesioned hemispheres until both hemi-
spheric sleep-wake analyseswere completed. Upon completion of
the independent bihemispheric sleep-wake analyses, the scientist
was unblinded to the lesioned hemisphere and utilized the con-
tralesional hemisphere’s sleep-wake states and arousal events for
scoring respiratory events that were used in subsequent cal-
culations, such as the AHI. Thus, sleep-wake variables were
scored (blindly) in the ipsilesional and contralesional hemi-
spheres by the sleep scientist to allow for comparisons based on
lesion location, whereas respiratory parameters were scored
contralesionally to allow for comparison between healthy
control patients and participants with stroke, in which case the
health-state of the hemisphere used could be a confounder for
respiratory events.21,22 In addition to EEG, the following were
recorded via home-PSG: electrooculogram (left and right
placement), electromyogram (mentalis/submentalis), electro-
cardiogram (modified lead II), pulse oximetry (oxygen satu-
ration), respiration (oronasal airflow using a nasal cannula),
respiratory inductance plethysmography (chest and abdominal
wall movement), and leg electromyogram.

Outcome measures
Patient macrolevel outcomes of sleep-wake included total sleep
time, sleep onset latency, wake after sleep onset, and sleep
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efficiency (the ratio of total sleep time to time in bed). Total sleep
time and sleep efficiency were automatically computed using the
SWA proprietary software (BodyMedia InnerView Research
Software). Sleep onset latency was manually calculated using
patient-measured “lights-out” time assessed from the sleep diary
time, whichwas confirmedwith the SWA’s detection of the first
“lay” time. Wake after sleep onset was manually calculated as
periods of wakefulness after the first defined sleep onset.

Epoch-by-epoch microlevel outcomes were measured as
follows. Epoch-by-epoch analyses and harmonization of SWA
and home-PSG data were conducted in accordance with pre-
viously published SWA validation methodologies.12,23,24 The
binary (1 = sleeping, 0 = awake) SWA sleep-wake estimations
were computed in 1-minute epochs across a single main
nighttime sleep period. Home-PSG sleep-wake data were an-
alyzed in 30-second segments (epochs) and were used as the
reference comparator for the SWA. PSG sleep epochs (NREM
1–3 and REM) and wake epochs were converted to binary
(sleep = 1, wake = 0) to mirror the SWA output binary data.
Because the SWA is limited to 1-minute epoch sampling, each
1-minute SWA epoch was divided into two 30-second epochs
to mirror PSG epochs, as previously reported.12,23,24 For ex-
ample, a 1-minute SWA sleep epoch was converted to two
30-second sleep epochs to match home-PSG epochs. SWA and
home-PSGdata exportswere synchronizedon the samenetwork
of computers to ensure that time zone outputs were matched
between measures. Secondary manual checks of time syn-
chronization for each epoch were conducted when binary SWA
and home-PSG data were aligned.

Statistical analysis
Statistical analyses were conducted in SPSS Version 26 (IBM
Corp, Armonk, NY) and Stata 15IC (Stata Corp, College
Station, TX). Reduced major axis regressions and concordance
statistics (ie, Bland-Altman, Lin’s concordance correlation
coefficients [CCC]) were conducted in Stata. Epoch-by-epoch
agreements, Cohen’s kappa coefficients, and demographic and
clinical comparisonswere computed in SPSS.All analyseswere
2-tailed, and a critical P value of .05 was used. Continuous
variables were summarized by median and interquartile ranges.
Categorical variables were summarized by number (n) and
percent. Mann-Whitney U tests were used for comparisons
between continuous measures because normality testing can be
severely underpowered in small samples. Fisher exact testswere
used for 2 × 2 categorical variables.

For the patient macrolevel analysis, the agreement between
SWA and PSG in total sleep time, sleep onset latency, sleep
efficiency, and wake after sleep onset was estimated using CCC
and further investigated using Bland-Altman limits of agree-
ment and reducedmajor axis regression (RMAR).25 TheRMAR
yields a slope and an intercept. A slope different from 1 is
indicative of the presence of proportional bias, when the
magnitude of disagreement between 2 methods increases or
decreases proportionally to the measured values. Under the
absence of proportional bias, an intercept different from 0 is
indicative of the presence of fixed bias, when the magnitude
of disagreement between 2methods is constant across the range
of measured values. The results of RMAR are reported as

scatterplots that include both the line of perfect concordance and
the fitted RMAR line.

For the epoch-by-epoch microlevel analysis, the sensitivity
and specificity of SWA to correctly identify individual epochs
as “sleep” or “wake” on PSG were estimated. Epoch-by-epoch
agreement between home-PSG and the SWAwere estimated for
individual patients usingCohen’s kappa coefficient, where k =1
shows perfect agreement and k = 0 shows agreement based on
chance alone. Viera andGarrett’s26 kappa scoring interpretation
for agreement between measures was used.

RESULTS

A total of 44 participants (28 patients with stroke, 16 healthy
control patients) underwent simultaneous overnight home-PSG
and SWA monitoring. One patient with stroke was excluded
because of SWA data loss. Polysomnographically measured
total sleep time, sleep efficiency, sleep onset latency, and wake
after sleep onset were not statistically different between groups
(ipsilesional-stroke vs control). Patients with stroke had a
higher prevalence of moderate-to-severe OSA (defined as
AHI > 15 events/h; 57% vs 38%; P = .09) and a higher arousal
index compared with the control patients (20 vs 12.50 events/h;
P = .03). Participant demographics, stroke characteristics, and
sleep metrics for patients with stroke and healthy control pa-
tients are summarized in Table 1. Stroke characteristics are
listed in Table S1 in the supplemental material.

Patient macrolevel outcomes
In the patients with stroke with total sleep time scored both ipsile-
sionally and contralesionally, we found moderate-to-fair agreement
(CCC = 0.49) between the SWA and home-PSG. Reduced major
axis results for the concordance of all sleep metrics in patients with
strokebetween theSWAandhome-PSGaresummarized inTable 2
and plotted in Figure 1. There was no evidence of proportional
bias (slope = 0.99). We observed a fixed bias for total sleep time
(intercept = –76.67); the SWA systematically overestimated
sleep time by approximately 77 minutes at a consistent rather
than a changing amount (ie, proportional bias) across magni-
tude. We observed poor agreement (CCC < 0.40) between the
SWA and home-PSG for all other measured sleep metrics,
including sleep efficiency, wake after sleep onset, and sleep
onset latency. The SWA overestimated sleep efficiency by
14.78 with evidence of proportional bias (RMAR slope = 1.41;
intercept = –49.58). The SWA underestimated wake after sleep
onset by approximately 63 minutes with evidence of propor-
tional bias (RMAR slope = 1.36; intercept = 40.44). The SWA
underestimated sleep onset latency by 3.51 minutes, and we
observed evidence of proportional bias (RMAR slope = 1.78;
intercept = –2.16).

Comparisons of concordance in healthy control patients
for the SWA and home-PSG are summarized in Table 3
and plotted in Figure S1 in the supplemental material. We
observed poor agreement (CCC < 0.40) between the SWA
and home-PSG for all sleep metrics in the healthy control pa-
tients, including total sleep time, sleep efficiency, wake after
sleep onset, and sleep onset latency. Similar to the comparison
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of concordance between the SWA and home-PSG in patients
with stroke, we observed fixed bias in the healthy control
patients for total sleep time (slope = 0.99; intercept = –94.04).
Proportional bias was observed for sleep efficiency (slope =
2.05; intercept = –115.74), wake after sleep onset (slope = 2.07;
intercept = 33.35), and sleep onset latency (slope = 1.13;
intercept = 6.71).

Epoch-by-epoch microlevel analysis
Group summaries of average within-participant epoch-by-ep-
och agreement characteristics for patients with stroke and
healthy control patients are presented inTable 4.No significant
differences in within-patient epoch-by-epoch agreement be-
tween patients with stroke and healthy control patients were
identified. Crude agreement between home-PSG and the
SWA was 78.21% for patients with stroke and 74.20% for
control patients.

Median sensitivity of the SWA (ie, agreement for sleep
detection) was high (95.90%) for patients with stroke and for

control patients (95.70%). Average specificity for the SWA
(ie, agreement for wake detection) was fair-moderate for pa-
tients with stroke (40.45%) and moderate (47.12%) for control
patients. Cohen’s kappa coefficients revealed fair agreement
(0.31) between the SWA and home-PSG in patients with stroke
and moderate agreement (0.42) in control patients.

DISCUSSION

Stroke is a common condition with high morbidity and mor-
tality. Disordered sleep in stroke is linked to important clinical
outcomes.1 This is the first study to undertake a robust evalu-
ation of ambulatory and noninvasive sleep monitoring devices
that will enable the objective measurement of the impact of
sleep-related interventions to improve sleep in stroke. We
assessed the concordance, specificity, and sensitivity of the
SWA against ambulatory home-PSG in patients with ischemic
stroke and healthy control patients using robust validation

Table 1—Participant demographics and sleep-respiratory characteristics of all participants with stroke and healthy
control patients.

Stroke (n = 28) Control (n = 16) P Value

Demographic characteristics

Age, y, median (IQR) 70 (63.25–77) 76 (71.50–77.50) .07a

Sex, male, n (%) 22 (79) 10 (63) .30b

Education, y, median (IQR) 12.50 (10.75–15.25) 16 (10.75–18) .19a

BMI, median (IQR) 28.02 (26–30.53) 25 (23–26) .87a

NART-FSIQ, median (IQR) 112.30 (104.30–120.80) 119.30 (111.05–124.15) .19a

Family history of stroke, n (%) 9 (32) 5 (31) > .99b

Family history of dementia, n (%) 6 (21) 6 (38) .30b

Depression diagnosis, n (%) 3 (11) 2 (13) > .99b

Hyperlipidemia diagnosis, n (%) 10 (36) 8 (50) .53b

Hypertension diagnosis, n (%) 13 (46) 6 (38) .75b

Ischemic heart disease, n (%) 2 (7) 2 (13) .61b

Atrial fibrillation diagnosis, n (%) 3 (11) 0 (0) .29b

Type 2 diabetes mellitus, n (%) 5 (18) 0 (0) .14b

High alcohol intake (> 14 standard drinks per wk), n (%) 2 (7) 2 (13) .61b

ApoE_e4 (≥ 1 allele), n (%) 7 (25) 1 (6) .22b

PHQ-9, median (IQR) 3 (1.25–5.75) 1 (1–2) .039a

GAD-7, median (IQR) 0.50 (0–3.5) 0 (0–1) .16a

PSG measured sleep-respiratory characteristics

Total sleep time, min, median (IQR) 319.50 (280.50–375.75) 319 (278.37–341.75) .59a

Sleep efficiency, ratio, median (IQR) 70.50 (60.75–78.62) 72.75 (57.37–78.00) .73a

Sleep onset latency, min, median (IQR) 8.00 (3.62–16.37) 14.25 (9.37–18.00) .08a

Wake after sleep onset, min, median (IQR) 119.50 (94.25–168.00) 110.50 (90.12–189.87) .75a

AHI, events/h, median (IQR) 25.00 (9.25–33.25) 10.00 (7.0–21.25) .09a

Arousal index, events/h, median (IQR) 20.00 (13.00–27.75) 12.50 (10.25–19.75) .03a

Moderate-severe OSA, n (%) 16 (57) 6 (38) .09b

aMann-Whitney U test. bFisher exact test. ApoE = apolipoprotein E allele, BMI = body mass index, GAD-7 = Generalized Anxiety Disorder 7-item
questionnaire, IQR = interquartile range (25th, 75th quartiles), NART-FSIQ = National Adult Reading Test-Full Scale, PHQ-9 = Patient Health
Questionnaire-9, PSG = polysomnography.
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statistics. Despite an acceptable (> 78%) average within-patient
epoch-by-epoch agreement in patients with stroke, the SWA
did not exceed moderate-to-fair agreement (CCC > 0.50) for
any measured sleep variables. Interestingly, the variability in
agreement between the SWA and home-PSG was consistent
between the ipsilesionally vs contralesionally scored sleep of
patients with stroke. Unihemispheric sleep EEG changes over
the ipsilesional hemisphere have previously been described
after acute stroke.20 Our null hemispheric findings suggest that
irrespective of stroke localization, the SWA’s sleep detection is
unlikely to be influenced by stroke hemisphere in the chronic
stages of stroke.

In addition, we observed proportional bias according to the
RMAR for all sleep variables excluding total sleep time. In line
with previous validation studies, total sleep time was the most
robustly quantified sleep variable computed by the SWA. We
observed no evidence of proportional bias for total sleep time;
however, a fixed bias was evident and the SWA systemati-
cally overestimated total sleep time by 77 minutes. The
variability in agreement between home-PSG and the SWA for
all sleep variables was extensive, and the SWA performed
poorest for sleep measures requiring discrimination of wake-
fulness. For example, accurate measurement of sleep onset
latency, an index of time elapsed from lights-out to sleep onset,
requires differentiation of mere lying down/quiet restfulness
from sleep initiation.

Unlike the more frequently used Bland-Altman analysis, the
RMAR allowed us to quantify both fixed and proportional
biases between the SWA and home-PSG.27,28 By separating the
fixed and proportional biases of the SWA, we were able to
determine whether the SWA gave differing values relative to
home-PSG across an entire range of measurement and whether
the SWAestimationdivergedprogressively.Our results suggest
that the measurement of total sleep time using the SWA diverge
from home-PSG across an entire measurement range in a
consistent amount across magnitude. Thus, the SWA’s over-
estimation of total sleep time may be easier to rectify (ie,

transform) when compared with sleep-wake variables with
proportional bias such as sleep efficiency, wake after sleep
onset, and sleep onset latency.29

Although the SWA includes additional biosensors (eg,
galvanic scale, near-body ambient skin temperature, heat
flux), which may enhance sleep-wake discrimination beyond
micromovement detection via traditional accelerometer, we
observed a relatively low specificity (ie, wake detection) of 40%
for the SWA in patients with stroke.23 Whereas previous val-
idation work comparing triaxial vs uniaxial accelerometers
showed a higher epoch-by-epoch agreement in the triaxial
device, a uniaxial device exhibited higher concordance for
wake after sleep onset and total sleep time.30 The proprietary
sleep-wake measurement algorithms of the SWA prevented
us from exploring biosensors that may be contributing to poor
specificity (ie, wakefulness) detection.

The armband nature of the SWA may provide a novel so-
lution to sleep measurement in clinical populations with upper
limb injuries resulting from stroke. Relative to wrist-worn
monitors, placement of the SWA on the upper arm mini-
mizes noise associated with small micromovements of the
wrist.31 Although the SWA has previously been shown to
outperform other consumer wrist-worn accelerometers such as
the Fitbit (Fitbit Inc, San Francisco, CA, USA) and Jawbone
Up (Jawbone Inc, San Francisco, CA, USA), it remains unclear
whether the armband vs wrist-worn nature of the SWA or its
additional sensors are responsible for enhanced sleep-wake
detection because of the device’s proprietary black-box
algorithms.32 Furthermore, no studies to date have assessed
the SWAas a sleepmonitor in patients with spinal cord injury or
strokewhere upper limb injury is pervasive. However, the SWA
has been used to assess energy expenditure in patients with
stroke with conflicting results. Manns and Haennel33 found
good agreement (CCC = 0.70) in a small sample of 12 patients
with chronic stroke when comparing energy expenditure
measured by the SWA and the StepWatch Activity Monitor. In
the acute stages of stroke (within 7 days of stroke), however,

Table 2—Comparison of concordance between PSG and SWA in ipsilesionally and contralesionally scored participants
with stroke.

Sleep Variable Mean Difference, in Min (SD) 95% CI Limits of Agreement
(Bland-Altman) CCC (95% CI) RMAR

Slope
RMAR

Intercept

Ipsilesional

Total sleep time –77.22 (71.28) –216.93 to 62.48 0.49 (0.28 to 0.71) 0.99 –76.67

Sleep efficiency –14.78 (14.33) –42.88 to 13.32 0.23 (0.01 to 0.44) 1.41 –49.58

Wake after sleep onset 63.59 (60.79) –55.56 to 182.74 0.30 (0.08 to 0.52) 1.36 40.44

Sleep onset latency 3.51 (10.23) –16.53 to 23.57 0.16 (–0.13 to 0.46) 1.78 –2.16

Contralesional

Total sleep time –80.15 (70.16) –217.67 to 57.37 0.48 (0.26 to 0.70) 0.97 –68.71

Sleep efficiency –15.15 (14.74) –44.03 to 13.74 0.21 (–0.01 to 0.42) 1.42 –50.87

Wake after sleep onset 65.04 (60.83) –54.19 to 184.26 0.30 (0.09 to 0.52) 1.38 40.42

Sleep onset latency 2.93 (10.18) –17.02 to 22.87 0.03 (–0.30 to 0.36) 1.58 –1.31

CCC = Lin’s concordance correlation coefficients, CI = confidence interval (lower–upper limit), PSG = polysomnography, RMAR = reduced major axis
regression, SD = standard deviation, SWA = SenseWear armband.
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Kramer and colleagues34 found poor agreement (CCC < 0.40)
between the SWA placed on the unaffected arm and the met-
abolic cart. Neither study compared the concordance of the
SWA between the unaffected vs the affected arm. It is therefore

unclear whether upper limb impairment contributed to the
SWA’s performance. Future studies systematically assessing
the SWA’s sleep-wake detection in populationswith upper limb
injuries are warranted.

Figure 1—RMAR plots of polysomnographically scored contralesional and ipsilesional sleep variables vs SWA scores.

Total sleep time (A, B), sleep efficiency (C, D), wake after sleep onset (E, F), and sleep onset latency (G, H). PSG = polysomnography, RMAR = reduced major
axis regression, SWA = SenseWear armband, TST = total sleep time, WASO = wake after sleep onset.
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Reduced agreement and increased variability between PSG
and the SWAgenerally occurred in unisonwith poorer sleep and
increased wakefulness. For example, large variability and lack
of concordance was particularly evident when sleep efficiency
was < 80% (Figure 1C, Figure1D), and a similar trend was
observed for > 100 minutes of wake after sleep onset
(Figure 1E,Figure 1F). Previous validation studies of theSWA
have been undertaken in a range of populations including
healthy adults10 and patients with OSA.14 We are the first to
examine the validity of the SWA in patients with a neurological
disorder in which sleep architectural disruption because of
infarction and de novo sleep disorders such as OSA are com-
mon. Unexpectedly, we found a high prevalence of previously
undiagnosed moderate-to-severe OSA in both cohorts. Despite
excluding participants with previously diagnosed OSA, we
found that over half of all patients with stroke exhibited un-
diagnosed moderate-to-severe OSA, defined as AHI > 15
events/h. The high prevalence of OSA in our stroke cohort is
unsurprising; poststroke OSA prevalence ranges from 44%–

72%.35 In addition to our validation findings, our respiratory
PSG-derived finding highlights the importance of formal sleep
studies in patients with stroke to identify undiagnosed OSA.

Interestingly, both our neurologically intact control patients
and patients with stroke exhibited relatively poor sleep-wake
quality (ie, sleep efficiency < 70%) and comparable SWA-PSG
concordance—possibly because of a lack of habituation period
for a single night of PSG. Nonetheless, our epoch-by-epoch
agreement and systematic biases are comparable to prior val-
idation work. For example, Soric et al13 and Roane et al23 re-
ported high individual variability in the SWA’s estimation of
total sleep time and an overestimation of total sleep time by > 60
minutes, respectively. However, this is in sharp contrast to
Sharif and Bahammam,14 who revealed near-perfect agreement
(whole-sample intraclass correlation coefficient [ICC] = 0.92)

for all sleep variablesmeasured in a heterogeneousOSA sample
of patients. They did not assess a binary epoch-by-epoch
agreement rating. However, similar to our findings, they also
generally observed lower agreement andwidening of variability
between the SWA and PSG in participants with sleep
efficiency < 60%.14 The significant differences in agreement
between our findings may therefore result from our cohort’s
poorer sleep efficiency (70% vs 73%–79%) and longer total
sleep time (319 minutes vs 187–290 minutes). These findings
suggest that caution is warranted when utilizing the SWA in
populations with excessive nighttime awakenings and frag-
mentation mediating poor sleep efficiency.

Limitations
An analytical limitation of the present study was that the SWA
and home-PSG recorded sleep at differing epochs, which re-
quired potentially imperfect matching. Specifically, 30-second
epochs were recorded for the home-PSG, whereas the SWA
recorded sleep in 1-minute epochs.Thus, in our epoch-by-epoch
analysis, we divided the SWA outputs to correspond with each
30-second PSG epoch. This procedure may have introduced
bias into our SWA’s epoch-by-epoch agreement rate, including
an overestimation of discordance with home-PSG. Additional
limitations lie in our cohort, which was relatively small.
However, our sample size of 44 participants was comparable to
or larger than previous published SWA validation studies that
included epoch-by-epoch analyses.12,23,24 Our sample also in-
cluded patients with mild stroke severity (baseline National
Institutes of Health Stroke Scale score, mean = 2.96). Because
sleep-wake dysfunction after stroke parallels stroke severity,
the SWA may perform worse in a larger, more heterogeneous
sample of patients with stroke with moderate-severe stroke
severity. Our study protocol only included a single sleep
night with no PSG habituation period. Although our use of

Table 3—Comparison of concordance between PSG and SWA in healthy control participants.

Sleep Variable Mean Difference in Min (SD) 95% CI Limits of Agreement
(Bland-Altman) CCC (95% CI) RMAR Slope RMAR

Intercept

Total sleep time –99.88 (56.52) –210.65 to 10.90 0.10 (–0.07 to 0.26) 0.99 –94.04

Sleep efficiency –21.06 (11.89) –44.37 to 2.25 0.03 (–0.07 to 0.14) 2.05 –115.74

Wake after sleep 80.63 (55.94) –29.01 to 190.26 0.04 (–0.10 to 0.19) 2.07 33.35

Sleep onset latency 7.68 (7.94) –7.87 to 23.24 0.37 (0.06 to 0.69) 1.13 6.71

CCC = Lin’s concordance correlation coefficients, CI = confidence interval (lower–upper limit), PSG = polysomnography, RMAR = reduced major axis
regression, SD = standard deviation, SWA = SenseWear armband.

Table 4—Within-participant epoch-by-epoch agreement measures in patients with stroke and healthy control patients.

Stroke (n = 27) Control (n = 16) P Value

Crude agreement, median (IQR) 78.21 (73.21–81.45) 74.20 (70.90–77.96) .25a

Kappa coefficient, median (IQR) 0.31 (0.10–0.44) 0.42 (0.33–0.49) .16a

Sensitivity, %, median (IQR) 95.90 (84.98–97.35) 95.70 (88.15–97.90) .87a

Specificity, %, median (IQR) 40.45 (18.97–54.57) 45.60 (34.05–55.25) .18a

aMann-Whitney U test. IQR = interquartile range (25th, 75th quartiles).
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at-home ambulatory PSG may have remediated the deleterious
environmental stressors associated with in-lab PSG studies,
multinight validation protocols should be prioritized when
viable. Furthermore, the limiting nature of proprietary black-
box algorithms common in consumer devices prevented us from
identifying which biosensors were responsible for the SWA’s
poor wake detection. Finally, a potential limitation was our use
of a single scorer for sleep staging. To minimize scorer bias, we
utilized an experienced research-grade sleep scientist with an
extensive track record of satisfactory participation in an external
analysis quality assurance program. In addition, the use of a
single scorer has the advantage of avoiding interscorer vari-
ability. We also limited the confounding effects of variably
classified events by assessing epochs binarily as sleep or wake
rather than comparing sleep subtypes/stages, which are prone to
interscorer variability and errors (ie, differentiating awake/
NREM-1, NREM-1/NREM-2, and NREM-2/NREM-3 sleep).36

CONCLUSIONS

Overall, the SWA shows promise as an ambulatory tool to
measure sleep-wake at a group level. Specificity at an individual
level, however, is onlymoderate-fair andwarrants cautionwhen
used as a diagnostic tool or in populationswith significant sleep-
wake fragmentation. This is especially the case if sleep-wake
variables beyond total sleep time (eg, sleep onset latency, sleep
efficiency, and wake after sleep onset) are used as primary
outcome measures. It is important to assess sleep-wake pa-
rameters beyond total sleep time in stroke populations; although
patients with stroke often exhibit long sleep duration, sleepmay
be fragmented with increased wake after sleep onset and poor
sleep efficiency.37,38 Similarly, sleep architecture may be dis-
turbed after stroke.38 Earlier work suggested that patients with
stroke exhibit alterations to NREM-3/slow-wave sleep, which
may be mediated by sleep disorders such as OSA.20 None-
theless, there are several advantages of the SWAover traditional
PSG,8,39whichgenerallymirror those of actigraphy and include:
its provision of longitudinal-prospective monitoring in a nat-
uralistic environment; its ambulatory, noninvasive, and cost-
effective technology; its ability to discriminate periodswhen the
device is not worn; and its limited effect on sleep architecture
(ie, a habituation period is not needed). Future validation studies
are warranted in heterogeneous stroke populations to examine
the effects of variable stroke severities (and stroke topogra-
phies) on device performance. In addition, future studies should
examine the SWA in tandem with more recently developed
and open-source (nonproprietary) multisensor ambulatory
sleep-wake technologies to establish which array of biosensors
and software contributes to optimal (> 90%) specificity and
sensitivity detection.40

ABBREVIATIONS

CCC, Lin’s concordance correlation coefficient
EEG, electroencephalography
home-PSG, at-home polysomnography

PSG, polysomnography
RMAR, reduced major axis regression
SWA, SenseWear armband
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