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Study Objectives: Obstructive sleep apnea (OSA) is considered to be an important risk factor for the development of cardiovascular disease (CVD). This study
aimed to develop and evaluate a machine learning approach with a set of features for assessing the 10-year CVD mortality risk of the OSA population.
Methods: This study included 2,464 patients with OSA who met study inclusion criteria and were selected from the Sleep Heart Health Study. We evaluated the
importance of potential features by mutual information. The top 9 features were selected to develop a random forest model.
Results: We evaluated the model performance on a test set (n = 493) using the area under the receiver operating curve with 95% confidence interval and confu-
sion matrix. A random forest model awarded the highest area under the receiver operating curve of 0.84 (95% confidence interval: 0.78–0.89). The specificity and
sensitivity were 73.94% and 81.82%, respectively. Sixty-three years old was a threshold for increased risk of 10-year CVD mortality. Persons with severe OSA had
higher risk than those with mild OSA.
Conclusions: This study demonstrated that a random forest model can provide a quick assessment of the risk of 10-year CVD mortality. Our model may be more
informative for patients with OSA in determining their future CVD mortality risk.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Obstructive sleep apnea is a prevalent disease and associated with increased fatal and nonfatal cardiovascular
disease (CVD). Early prediction is important to prevention of CVD morality for patients with obstructive sleep apnea.
Study Impact: This study is one of the first to combine random forest modeling and obstructive sleep apnea severity with other conventional CVD risk fac-
tors to predict the risk of 10-year CVD mortality. This approach has the potential to provide more personalized prediction of long-term CVD risk to patients
with obstructive sleep apnea.

INTRODUCTION

Cardiovascular disease (CVD) is a class of prevalent diseases,
including myocardial infarction, angina pectoris, heart failure,
coronary revascularization procedure, and stroke. In the United
States, a recent study found CVD is the cause of 655,000 deaths
each year.1 Preventing CVD disease and related mortality cen-
ters on identification of persons at greatest risk and subsequent
treatment and mitigation of various risk factors.

Obstructive sleep apnea (OSA) is a highly prevalent disease
and frequently coexists with CVD. In the general population,
approximately 22% (range, 9–37%) in men and 17% (range,
4–50%) in women have OSA.2 Studies found OSA is positively
associated with increased fatal and nonfatal cardiovascular
events,3–5 and is an important risk factor for the development of
stroke.6 Information that would identify those at greatest risk
for subsequent CVD mortality, defined as death due to cardio-
vascular or cerebrovascular disease, in an OSA population
would be useful to clinicians.

The commonly used evaluation tools of 10-year CVD risk
(eg, Framingham Risk Score7), however, do not include sleep
factors as predictors. Our hypothesis is that we can use machine
learning models with traditional risk factors and sleep factors to
provide personalized prediction of 10-year CVD mortality risk
for middle-aged adults with OSA. Therefore, in this study, we
developed an approach that uses mutual information and ran-
dom forest modeling to assess 10-year risk of CVD mortality
for patients with OSA.

METHODS

Dataset
The Sleep Heart Health Study (SHHS) dataset was used to
develop several machine learning models for assessing the
10-year risk of CVD mortality.8–10 The SHHS is an ideal
resource to be utilized for this purpose because it was a prospec-
tive multicenter cohort study designed to investigate the
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longitudinal impact of OSA on CVD in the United States. A
complete description of the SHHS has been previously pub-
lished.8 Briefly, 6,441participants, 40 years of age and older
were recruited starting in 1995 from several ongoing “parent”
cardiovascular and respiratory disease cohorts that were ini-
tially assembled between 1976 and 1995. The publicly accessi-
ble database (Figure 1) included 1,280 variables and 5,804
participants, with 2,765 males (47.6%) and 3,039 females
(52.4%).9,10

Polysomnography
Home polysomnography was recorded using the Compumedics
P Series System (Compumedics Ltd., Abbotsford, Australia).
The montage included a single-lead electrocardiogram, heart
rate (using a bipolar electrocardiogram lead), 2 electroencepha-
logram derivations (C4/A1 and C3/A2), 2 electrooculogram
derivations, chin electromyography, thoracic and abdominal
respiratory inductance plethysmography, airflow (detected by a
nasal-oral thermocouple [Protec, Woodinville, WA]), finger
pulse oximetry (Nonin, Minneapolis, MN), and body position
(using a mercury gauge sensor), and ambient light (on/off, by a
light sensor secured to the recording garment).8 At the time of
the home visit, each participant’s medications were docu-
mented. In addition, the SHHS Sleep Habits Questionnaire and
Health Interview were administered; these questionnaires

included the Epworth Sleepiness Scale and the Medical Out-
comes Study SF-36 as well as items which ascertained the pres-
ence of several health conditions.11,12 Blood pressure was
measured manually in triplicate in a seated position after
5 minutes of rest.8 Body weight was obtained using a digital
scale. Comprehensive descriptions of the polysomnography
and quality-assurance procedures have been previously pub-
lished.13 The vital status and days since the baseline examina-
tion were recorded during the follow-up years until 2010.
Adjudication of cardiovascular events and mortal status for
SHHS was performed locally by each of the study’s parent
cohorts as previously described.14

Scoring
Sleep was scored according to criteria described by Rechtschaf-
fen and Kales.15 Intrascorer and interscorer reliabilities were
high.13 The apnea-hypopnea index (AHI) was calculated for
each participant as the sum of all apneas and hypopneas divided
by the total sleep time. An apnea was defined as a complete or
almost complete cessation of airflow, as measured by the ampli-
tude of the thermocouple signal, lasting at least 10 seconds.
Hypopneas were identified if the amplitude of a measure of
flow or volume was reduced discernibly (at least 30% lower
than baseline breathing) for at least 10 seconds, if the event did
not meet the criteria for apnea, and the event was associated
with a ≥ 4% oxygen desaturation from baseline.

Preprocessing
As shown in Figure 1, 2,974 participants had an AHI ≥ 5
events/h at the baseline examination of SHHS and were consid-
ered to have OSA; 510 were excluded because of the absence of
10-year mortality information. Therefore, the resulting analytic
dataset included a total of 2,464 participants.

Selection of features to be used in model development was
based on previous studies documenting their association with
CVD.16–23 These included demographics (age and sex), anthro-
pometric (body mass index was calculated as weight [kg]/
height [m2]), social behavioral indices (smoking history [life-
time over 20 packs of cigarettes] and alcohol usage), plasma
lipids (cholesterol, high density lipoprotein, and triglycerides),
several diseases (hypertension, diabetes, and depression), spi-
rometry (forced vital capacity [FVC] and forced expiratory vol-
ume [FEV1]), and preexisting CVD history. We also included
several sleep factors (insomnia, total sleep time, time in bed,
and AHI). Because of the small number of individual CVD
events, we defined the prevalence of CVD as the presence of
myocardial infarction, angina pectoris, heart failure, coronary
bypass surgery, stroke, angioplasty, or other heart/cardiac sur-
gery history before the baseline study. Depression was defined
as feeling “blue” or “down” for at least “a good bit of the time”
for the previous 4 weeks before the baseline study or current
use of antidepression medicine. We defined insomnia symp-
toms as often or almost always having “trouble falling asleep,”
“waking up during the middle of the night and having difficulty
getting back to sleep,” or “waking up too early in the morning
and being unable to get back to sleep.” Hypertension was
defined as blood pressure greater than 140/90 mm Hg based on

Figure 1—Flow of study participants.

AHI = apnea-hypopnea index, CVD = cardiovascular disease, SHHS =
Sleep Heart Health Study.
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the average of the second and third blood pressure readings or
current treatment with hypertension medication. Sleepiness was
stratified into 4 levels (normal: 0–10, mild: 11–14, moderate:
15–17, severe: 18 or higher) based on participants’ Epworth
Sleepiness Scale score.

Based on their adjudicated mortality outcomes, each partici-
pant was labeled as “Negative/Positive” for 10-year CVD mor-
tality and was used as ground truth for the model outcomes. We
randomly separated the 2,464 participants into 2 sets: a training
set (n = 1971) and a test set (n = 493). Approximately 24% of
participants had at least 1 missing value that was considered
missing at random. However, in both training and test sets, age,
sex, hypertension, and all sleep factors (eg, AHI) did not
include missing values. The overall missing rate was less than
2%. Therefore, we used the mean values calculated by the train-
ing set to impute the continuous variables in the training set and
test set.24,25 For handling missing categorical values, we used a

dummy method to encode the categorical features (eg, diabetes
[positive, negative, unknown] was encoded to diabetes positive,
diabetes negative, and diabetes unknown features).

We used the same test set (n = 493) with additional variables
(eg, systolic blood pressure) to evaluate the Framingham Risk
Score. Approximately 8% of the participants included at least 1
missing value. The Framingham study provided mean values
and negative labels (0) were used to impute continuous varia-
bles and categorical variables, respectively.7

Model development
We developed and evaluated a random forest model for assess-
ing the 10-year CVD mortality risk. Random forest is a type of
ensemble learning algorithm. It builds multiple decision trees
by randomly choosing subsamples from the training set and
uses a weighted averaging method to improve their predictive
accuracy where decision trees aim to learn decision rules from

Table 1—Description of training and test sets.

Training Set
(n = 1,971)

Test Set
(n = 493) P

Risk factors

Age (years) 67 ± 10 66 ± 10 .45

Male (%) 58 57 .69

Race (%) .86

White 89 88

Black 7 8

Others 4 4

Body mass index (kg/m2) 30 ± 5 29 ± 5 .62

Total cholesterol 207 ± 39 209 ± 36 .31

High density lipoprotein (mg/dL) 48 ± 15 49 ± 15 .39

Triglycerides (mg/dL) 160 ± 113 159 ± 112 .89

Alcohol usage (drinks/day) 3 ± 6 3 ± 6 .33

Forced expiratory volume (liters) 3 ± 1 3 ± 1 .60

Forced vital capacity (liters) 4 ± 1 4 ± 1 .55

Apnea-hypopnea index (events/h) 18 ± 15 18 ± 14 .43

Sleep time (minutes) 586 ± 105 577 ± 114 .09

Time in bed (minutes) 439 ± 58 435 ± 62 .18

Insomnia (%) 30 30 .98

Sleepiness (%) .31

Normal 73 76

Mild 18 17

Moderate 6 5

Severe 3 2

Hypertension (%) 47 49 .35

A history of cardiovascular diseases (%) 21 21 .73

Diabetes (%) 10 9 .33

Depression (%) 5 7 .28

Smoking history (> 20 packs in whole lifetime)
(%)

56 56 .91

Ground truth

10-year cardiovascular disease mortality (%) 9 11 .19

A Li, JM Roveda, LS Powers, et al. OSA predicts 10-year CVD mortality
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the training data.26 Random forest can catch both linear and
nonlinear relationships between input features and the target
variable.

We used mutual information technology with 5-fold strati-
fied cross validation to evaluate the importance of the features.
Mutual information measures the amount of information that 1
random variable contains about the target variable.27,28 High
mutual information means a large reduction in the uncertainty
of the target variable, when the values of a random variable are
provided. Zero mutual information means the 2 variables are
independent. The top 50% of features (9 features) with the high-
est mutual information were selected as input to train the ran-
dom forest model. In development, we set the weight of the
negative class to 11 to overcome a class imbalance problem.
Grid search with stratified 5-fold cross validation was used to
find the optimal values of hyperparameters (criterion, max
depth, max samples, max features, and number of estimators),
where the stratified cross validation was used to preserve the
percentage of samples of each class for each fold. After finding
optimal hyperparameters and evaluating the performance of a
model by 5-fold cross validation, we trained the model with the
best found hyperparameters on the entire training set (n = 1971)
and evaluated the performance on the hold-out test set
(n = 493). The random forest model was implemented by
Python package Scikit-learn v0.23.29

Statistical analysis
We used mean and standard deviation as well as percentages to
provide an overall description of the training and test sets. Chi-
square and 2-tailed t tests were used to measure the difference
between the training and test sets. We used the area under the
receiver operating curve (AUC) as the metric to evaluate perfor-
mance. Delong’s method was used to compute the 95% confi-
dence interval of AUC.30,31 A bootstrap method with 1,000
iterations and 50% samples was used to compute the 95% confi-
dence interval of adjusted odds ratios. We considered that P <
.05 indicated statistical significance in our analyses. Analyses
were performed using Python package Scikit-learn v0.23 and
Scipy v1.4.29,32

RESULTS

Table 1 describes the demographic, anthropometric and clinical
characteristics of datasets. We did not find statistically signifi-
cant differences between the training set and test set.

We used mutual information technology to evaluate the
importance of the 19 features (Figure 2). The age feature had
the highest mutual information. Figure 2 also shows that the
FVC and FEV1 have higher mutual information than most of

Figure 2—Feature importance.

AHI = apnea-hypopnea index, BMI = body mass index, CVD = cardiovascular disease, FEV1 = forced expiratory volume, FVC = forced vital capacity, HDL = high-
density lipoprotein, nat = natural unit of information.
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the other features. We also found that the dependency between
10-year CVD mortality and AHI was lower than for FEV1 and
FVC but higher than for diabetes, high density lipoprotein,
body mass index, and cholesterol.

On the training set, the random forest model awarded an
AUC of 0.84. On the test set (n = 493), the random forest model
achieved higher AUC than the Framingham Risk Score (AUC:
0.84 vs 0.75) which we show for comparison (Figure 3).

In evaluation, we chose 0.5 as the threshold for classifying
positive/negative 10-year CVDmortality. The confusion matrix
of the ensemble random forest model is shown in Figure 4.
It showed excellent discrimination ability. The sensitivity and
specificity of the random forest model were 81.82% and
73.94%, respectively.

Figure 5 shows the impact of features on the output. As age
and AHI increase, the probability of CVD mortality after 10
years increases as well. For example, 63 years is a threshold for
increased risk of 10-year CVD mortality. The odds for CVD
mortality after 10 years for a 67-year-old is 1.290-fold (95%
confidence interval: 1.276–1.297) that of under 63-year-old.
Similarly, persons with severe OSA (AHI = 35 events/h) have a
1.057-fold (95% confidence interval: 1.055–1.059) greater risk
than those with mild OSA (AHI = 5 events/h).

Figure 3—Receiver operating characteristics analysis.

The blue dot line (45-degree diagonal) indicates the performance of a random classifier. The shadows indicate 95% CI. AUC = area under the receiver operating
characteristic curve, CI = confidence interval.

Figure 4—Confusion matrix.

0.5 was selected as the probability threshold. The confusion matrix was nor-
malized over the true label to show prediction performance as percentages.
The diagonal elements represent the percentage of participants for which
the predicted label is equal to the true label. The off-diagonal elements repre-
sent the percentage of misclassified participants. The color bar represents
percentage; darker blue means higher percentage.
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DISCUSSION

In this study, we developed a random forest model on a popula-
tion with OSA to assess its ability to calculate the risk of CVD
mortality after 10 years and compared it with the Framingham
Risk Score. The random forest model performed the best with a

0.84 AUC (95% confidence interval: 0.78–0.89). This study
demonstrated that the random forest model provided an accu-
rate decision model for 10-year mortality in patients with OSA.

Our finding that the random forest model performed better
than use of the Framingham Risk Score is of particular interest.
The Framingham Risk Score includes age, sex, smoking

Figure 5—Adjusted odds of CVD mortality, given features of the model.
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history, lipid levels, blood pressure, and use of antihypertensive
medications.7 In contrast, the most important features in our
approach had little overlap with the Framingham Risk Score
with the exception of age and history of hypertension. Thus, it
appears that in an OSA population, factors predicting 10-year
CVDmortality are different than in a general adult population.

We found AHI is an important predictor for assessing the
risk of 10-year CVDmortality. By applying mutual information
analysis, we found it was more informative for predicting CVD
mortality than diabetes, high density lipoprotein, and choles-
terol, which are commonly used features, although it was less
useful than FVC and FEV1. Additionally, the random forest
model learned to use AHI as an important feature to build deci-
sion trees and showed a high discrimination ability. We also
found severe OSA patients have a higher risk than mild OSA
patients on 10-year CVD mortality. These findings are consis-
tent with previous research. Results from several large cohort
studies also have found OSA is associated with CVD and CVD-
related mortality.33,34 Our study extends these previous reports
by using a different analytic approach to confirm that OSA
severity is an important pathophysiologic component leading to
CVD mortality in a population with OSA. Furthermore, it sug-
gests that in this population, OSA severity is more important
than the presence of diabetes and hyperlipidemia.

Age contributed the highest predictive power. Several previous
studies have proven that age is a primary risk factor of CVD and
CVD mortality and adults aged over 65 years accounted for 82%
of total CVD mortality in 2005.35–37 Through the random forest
model, we further found the risk of CVDmortality had a nonlinear
association with age. Sixty-three years is an important threshold
for increased risk of 10-year CVD mortality. Additionally, we
also observed that the 10-year risk for CVD mortality for a 67-
year-old and a 73-year-old are 1.3-fold and 13.6-fold that of those
under 63 years old, respectively. The random forest model com-
bined age with other features and showed higher discrimination
ability. Our observations suggest that OSA severity and age in
conjunction with other conventional CVD risk factors have the
potential to provide a more personalized prediction of long-term
CVD risk to patients with OSA.

Interestingly, we found that pulmonary function (FEV1 and
FVC) was an important predictor of mortality. Furthermore, the
dependency between FEV1 and FVC and 10-year CVD mortal-
ity was higher than all other risk factors, except age and history
of previous CVD. Previous studies also have reported an
inverse risk of all-cause mortality with better pulmonary func-
tion. In one study there was a linear negative association
with FVC and nonlinear negative association with FEV1.

38

Magnussen et al found that reduced FEV1 and FVC were
related to all-cause mortality in the general population.39 Our
findings reinforce the concept that the pulmonary and cardio-
vascular systems are intertwined and suggest that improvement
in pulmonary function, if possible, may be more important than
correction of other cardiac risk factors.

Several limitations of our study should be noted. First, the
average age of the study population is over 65 years old. Further
study is required to test the model on a younger population. Sec-
ond, we classified patients with OSA by an AHI definition
requiring at least a 4% desaturation for hypopneas. In the future,

the models need to be evaluated on an OSA population who are
identified by an AHI definition requiring a minimum 3% desa-
turation for hypopneas or arousal. Finally, there may have been
some misclassification of preexisting CVD. Our definition
combined several different outcomes and was dependent on
adjudication of these outcomes by SHHS’s parent cohorts. In
some cases, these may have been self-reported.

Although there are limitations, our study has several
strengths. We used the innovative mutual information proce-
dure to evaluate the dependency between features and 10-year
CVD mortality on a large well characterized OSA cohort. The
random forest model outperformed the Framingham Risk Score
and explored nonlinear associations between risk factors and
CVD mortality. Importantly, all participants had polysomnog-
raphy to document the severity of their OSA and CVD out-
comes were objectively adjudicated.

In conclusion, we evaluated a machine learning model on a
large OSA population and found that the model outperformed
the Framingham Risk Score for prediction of 10-year CVD
mortality and that OSA severity was a significant contributor
to the prediction model. In an OSA population, use of our
model may be more informative for patients in determining
their future CVD mortality risk than more conventional risk
assessments.

ABBREVIATIONS

AHI, apnea-hypopnea index
AUC, area under the receiver operating curve
CVD, cardiovascular disease
FEV1, forced expiratory volume
FVC, forced vital capacity
OSA, obstructive sleep apnea
SHHS, Sleep Heart Health Study
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