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Study Objectives: For surgical treatment of patients with obstructive sleep apnea-hypopnea syndrome, it is crucial to locate accurately the obstructive sites
in the upper airway; however, noninvasive methods for locating the obstructive sites have not been well explored. Snoring, as the cardinal symptom of obstructive
sleep apnea-hypopnea syndrome, should contain information that reflects the state of the upper airway. Through the classification of snores produced at four
different locations, this study aimed to test the hypothesis that snores generated by various obstructive sites differ.
Methods:We trained and tested our model on a public data set that comprised 219 participants. For each snore episode, an acoustic and a physiological
feature were extracted and concatenated, forming a 59-dimensional fusion feature. A principal component analysis and a support machine vector were used for
dimensional reduction and snore classification. The performance of the proposedmodel was evaluated using several metrics: sensitivity, precision, specificity,
area under the receiver operating characteristic curve, and F1 score.
Results: The unweighted average values of sensitivity, precision, specificity, area under the curve, and F1 were 86.36%, 89.09%, 96.4%, 87.9%, and 87.63%,
respectively. The model achieved 98.04%, 80.56%, 72.73%, and 94.12% sensitivity for types V (velum), O (oropharyngeal), T (tongue), and E (epiglottis) snores.
Conclusions: The characteristics of snores are related to the state of the upper airway. The machine-learning–based model can be used to locate the vibration
sites in the upper airway.
Keywords: machine learning; multiscale entropy; snore classification; obstructive sleep apnea hypopnea syndrome
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Snores, produced by the vibration of collapsed structures of the upper airway during sleep, can be used to identify
sites of snore generation. We aimed to explore distinct acoustic and physiological characteristics of different snore types and develop a machine-learning
based approach to enable automatic classification of snoring sounds for identification of the obstruction site.
Study Impact: This is the first study to investigate both the acoustic characteristics of snores and their physiological characteristics. We found that snores
generated by different sites have unique features, and snore sounds contain information that can be used to locate the vibration sites in the upper airway.
Such approaches may enable automatic classification of snore types and assist in treatment decisions for patients with obstructive sleep apnea-
hypopnea syndrome.

INTRODUCTION

Snoring is a respiratory noise produced by the vibration of
collapsed structures of the upper airway during the inspiratory
phase of breathing. The reported prevalence of snoring is 50% in
adults and 3.2%–12.1% in children.1–3 It is considered the
earliest symptom of obstructive sleep apnea-hypopnea syn-
drome (OSAHS),4 and it is closely related to complications
associated with OSAHS, such as diabetes and cardiovascular
diseases.5 Continuous positive airway pressure (CPAP) is the
most common treatment for OSAHS, but nonadherence to this
treatment is a significant problem.6 A common non-CPAP
medical intervention is surgery, especially for patients with
mild or moderate OSAHS.7 It is noteworthy that many surgical
options are available for different obstruction locations; for
example, if the obstruction is at the palatal wall, the treat-
ment can be an expanding operation on the side palatal wall,
whereas if the obstruction is limited to the oropharynx/palate,

uvulopalatopharyngoplasty is a better choice.8,9 The low suc-
cess rate of surgery makes this treatment controversial.10,11

Careful patient selection is required in clinical practice based
on the sites of obstruction in the upper airway, and knowledge of
the precise location can improve the success rate of surgical
treatment.12,13 Therefore, precise assessment of the obstructive
location in the upper airway is of the utmost importance, but the
method of determination is still imprecise.

The current, broadly used approach to locate upper airway
obstruction is drug-induced sleep endoscopy (DISE), which
requires certified surgeons to perform endoscopy during a
pharmacologically induced sleep. Among several descriptive
classification systems for DISE results, the velum-oropharyngeal-
tongue-epiglottis (VOTE) system classifies upper airway ob-
structions by using anatomical structures, as shown inFigure 1.
It is widely used because of its simplicity and accuracy,14 but it
has some major limitations. First, it could potentially lead
to artificial additional sites owing to oversensitivity of the
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observation, prolonged examination, or misunderstanding of the
correlation between the DISE image and considerably decreased
airflow.7 Second, the procedure is performed during drug-
induced sleep, and it is questionable whether the architecture of
artificial sleep is comparable to that of natural sleep.12 Third, the
procedure requires special rooms, equipment, and trainedpersonnel.15

There has been increasing demand for alternative approaches
that are free of these limitations to complement or replace DISE
for the identification of obstruction locations. Snoring, as a
product of the vibration location in the upper airway, carries
vital information about the condition of the upper airway; such
information is simple to acquire and analyze during natural
sleep.16 Different vibration locations are correlated with the
distinct acoustic characteristics of the snoring.17

Some attempts have beenmade using artificial neural networks
to classify VOTE sites based on snoring18–20; however, these
methods did not consider the physiological information con-
tained in the snoring, and accuracywas thus not high. Therefore,
the primary purpose of this study was to develop an enhanced
algorithm to improve the accuracy of locating an obstructive site
by capturing the information of the state embedded in snoring.

METHODS

Database
We used the Munich Passau Snore Sound Corpus (MPSSC) in
this study.17 Snoreswere derived from endoscopic recordings of
DISE examinations and labeled as V, O, T, and E, corre-
sponding to four locations of the upper airway: velum (velum
area), oropharyngeal (palatine tonsils and the lateral pharyngeal
wall tissues), tongue (tongue base), and epiglottis. This is a

sample-oriented rather than individual-oriented database,
whichmeans that snores from the same individual can be belong
to different classes. The snoring sounds were recorded at a
sample rate of 44,100 Hz with different equipment (naso-
pharyngoscope, recording system, cell phone) at three clinical
centers from 2006 to 2015.

Participants with snores originating from more than one
location and samples that were corrupted by noise were ex-
cluded. To diversify the samples, a maximum of six snoring
episodes of the same class were included per participant. The da-
tabase comprised 219 participants whose average age was 49.8
(range= 24–78) years; male participants predominated (93.6%).
Atotalof828snoreepisodeswerecapturedwithanaverageduration
of1.46(0.73–2.75) seconds per episode. The number of episodes
and average duration per category are shown in Table 1.

To avoid the bias of dividing the sample into a training set and a
test set, given the imbalance of the sample, a hierarchical cross-
validation strategywas used for training and testing. Specifically,
80%of samples from the four classes, proportional to the data set,
were selected as the training set, and the remaining 20%was used
as the test set. That is, a fivefold cross-validation strategy was
used in our analysis, meaning that the described procedure was
repeated five times. This secondary analysis was conducted on
deidentifieddata anddid not involve a researchprotocol requiring
approval by an institutional review board or ethics committee.

Signal processing

Feature extraction

The process whereby sound is perceived by humans goes
through three stages: production (the core reasonwhy the sound

Figure 1—Diagram of the VOTE scheme in the upper airway.

In this figure,V,O, T, andE refer to four locationsof theupper airway: velum(velumarea), oropharyngeal (palatine tonsils and the lateral pharyngealwall tissues), tongue
(tongue base), and epiglottis. Reprinted, with permission, from Qian K et al. Classification of the excitation location of snore sounds in the upper airway by acoustic
multifeature analysis. IEEE Transactions on Biomedical Engineering. 2017;64(8):1731–1741. https://doi.org/10.1109/TBME.2016.2619675.
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is different), transmission (medium sending sound from the
source to the receiver), and reception. During sleep, snore
sounds are generated by vibrations at different obstruction sites
and through resonance of the upper airway.We assumed that the
vibration processes at different sites have different physio-
logical characteristics (such as frequency and complexity).
Specifically, perception of the human ear ismost accurate at low
frequencies, and in this range, the perception and frequency are
linearly related. The human auditory system perceives higher
frequencies less accurately, and above a particular range,
perception correlates logarithmically with frequency. Loga-
rithmic representation means that the difference between high
frequencies is compressed and hence not perceived as accu-
rately. There are various psychoacoustic models of frequency
perception scales. One commonmodel is the mel scale. Themel
frequency cepstral coefficient (MFCC) was designed to capture
the perception characteristics using the mel-frequency scale. In
addition, the degree of complexity of different physiological
signals generated by different systems or by the same system
during different conditions differs. Therefore, for each snore
episode, two features were extracted to capture the character-
istics of the production and reception processes: complexity
(defined by multiscale entropy, MSE) of the zero-crossing rate
(ZCR) and MFCC. Furthermore, principal component analysis
(PCA) was used to capture the most significant components of
the features.

Signal transformation and complexity measurement

The ZCR is a commonly used technique in sound classification.
ZCR transformation can provide an estimation of the frequency
content of a signal in a time-domain at low computational cost21;
thus, it is often used as a part of the front-end processing. ZCR is
defined as the number of time-domain zero-crossings within a
defined region of a signal, divided by the number of samples of
that region. It represents the smoothness of the signal and is an
indicator of the frequency (examples are shown in Figure 2).
Compared with the raw snoring sounds, the ZCR-transformed
signals contain more meaningful information. As different
vibrational tissues can be considered different physiological
systems, the snoring sounds produced by them contain their
characteristics (vibration frequency, amplitude, degree of upper
airway obstruction, and so forth). Therefore, both the original
snoring sounds and the ZCR-transformed signals remain
nonstationary and nonlinear in nature. To capture the charac-
teristics of snoring sounds, we appliedMSE as themeasurement
of complexity.

The MSE algorithm is based on the application of approx-
imate entropy22 or sample entropy23 for different scales of
the same process. Approximate entropy and sample entropy
are measures of regularity (orderliness) in serial data. The
largest values of entropy correspond to completely random
sequences; however, an increase in entropy may not imply a
higher physiological complexity for physiological signals.
For example, we can obtain a new signal with a higher entropy
value by shuffling a snoring sound, but the new signal does
not contain any meaningful physiological information because
single-scale–based entropy cannot reveal the long-range cor-
relation on a multiple temporal scale. Therefore, MSE has
been developed to quantify the complexity of a physiological
signal over different time scales. It has been widely used in the
field of signal analysis, especially for the analysis of physio-
logical signals.24–31 In our analysis, we calculated entropies on
20 scales of ZCR-transformed signals as the measurement
of complexity, and we compared the complexity levels of the
four snore types.

Mel-frequency cepstral coefficients

MFCCs are the most widely used acoustic features in speech
recognition and other audio-based research tasks.32–35 It is an
acoustic approach that uses not only the production phase but
also the reception phase. Specifically, it is representative of the
vocal tract by computing the envelope of the time-power
spectrum of the speech signal. On the other hand, according
to psychophysical studies, human auditory systemperception of
a sound’s frequency follows an overall nonlinear scale, which is
spaced linearly at frequencies below 1KHz and logarithmically
above 1 KHz. MFCC characterizes the human ear perception of
frequency byusing a set of nonlinear spaced triangular bandpass
filters. Considering the similarities between snoring production
and speech generation, here the upper airway acts like the vocal
tract. We believe the MFCC can capture differences in the
acoustic characteristics of snoring sounds generated bydifferent
vibration locations. It is worth noting that because the duration
of snores is different, the total number of MFCCs is different.
We used thefirst 13 coefficients by taking into consideration the
fact that most of the signal feature is compacted in the first few
coefficients owing to the properties of the cosine transform.
Furthermore, its delta (first-order difference) and acceleration
(second-order difference) features related to the change in the
characteristics of snores over timewere added. Finally, a total of
39 features (13 MFCC, 13 Δ, and 13 acceleration) were
extracted from each snoring sound.

Table 1—Number of snore episodes per class.

Class V O T E

No. of patients 134 56 10 24

No. of episodes
Total number 484 216 39 89

Mean (over patient) 3.61 3.86 3.90 3.71

Duration (s)
Mean (over episode) 1.5457 1.4688 1.2670 1.5202

SD .3478 .3108 .3716 .3629

E = epiglottis, O = oropharyngeal, SD = standard deviation, T = tongue, V = velum.
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PCA

PCA is used abundantly in many fields because it is an unsu-
pervised, simple approach to reduce the redundant information
from original data sets by performing linear transformation
techniques. PCA provides a way to reveal the hidden crucial
information that often underlies the original data. PCA aims to
remove redundant information by linearly combining the
original features and retaining the effective information of the
data with as few dimensions as possible. In our study, we used
PCA to extract the most significant components of features and
reduce the computation for dimensionality reduction.

Classification
Machine learning is a proven potentmethod in classification tasks.
One of themost powerful yet simplemachine-learning approaches
is a support vector machine. It aims to find a hyperplane that

separates the test data set into a discrete, predefined number of
classes in a manner consistent with the training examples.

It has also been used increasingly in the past few years in
physiological signal analysis as it can provide a systematized
architecture for analyzing and extracting important information
from complex data.36 Hence, a support vector machine–based
machine-learningmodelmay be promising for the classification
of snoring sounds. In our study, we selected 80% of theMPSSC
data set randomly for training; the remainder were used for
testing. This process was repeated 10 times, and the average
accuracy was calculated as the final accuracy.

Statistical analysis
Signal processing and statistical analyses were performed using
MATLAB 2017b (MathWorks, Inc., Natick, MA). Descriptive
statistics were reported with mean and standard deviation for

Figure 2—Examples of snore sound signals and their transformation.

For each snore type, the upper panel shows the raw audio waveform of a snore episode, the middle panel shows the corresponding ZCR-transformed signal,
and the lower panel shows the spectrogram of snore episode. E = epiglottis, O = oropharyngeal, T = tongue, V = velum, ZCR = zero crossing rate.
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continuous data (eg, duration of snore episodes) and number
(count) for categorical data. Comparisons of continuous vari-
ables between snore types (eg, complexity of ZCR-transformed
signals) were assessed by analysis of variance. A P
value < .05 was considered statistically significant. Accuracy
was calculated to evaluate the overall performance of the
proposed method. For each snore type, the sensitivity (true
positive rate), specificity (true negative rate), area under the
receiver operating characteristics curve, precision, andF1 score
were also investigated to evaluate the robustness of ourmethod.
The precision (also called the positive predictive value) is the
fraction of relevant instances among the retrieved instance, that is:

precision=
number of true positive

number of true positive + number of false positive

For conveying the balance between sensitivity and precision,
the F1 score was used, defined as follows:

F1 =
2 × Precision × Sensitivity
Precision + Sensitivity

A confusionmatrix was used to present the results in a clean and
unambiguous way.

RESULTS

Complexity features of the ZCR-transformed
audio signals
Complexity levels of the ZCR-transformed snoring sounds
of the four snore types were compared (Figure 3). Overall,

the complexity (indicated byMSEvalues) increased dramatically
from small scales to larger scales.Differences in complexitywere
more distinguishable at larger scales (eg, entropies on scale 3 to
scale 20). The entropy of type E snores was significantly higher
than that of the other three snore types (P < .05).

Reduced feature space of snores
From MSE and MFCC analyses, a total of 59 dimensional
features were obtained for each snore type. The dimensionality
of the features (20 entropies from MSE analysis and 39 pa-
rameters from MFCC analysis) was then analyzed by PCA. By
calculating the variance contribution rate of new (linearly
combined) features with the variance of the original data,
we found that three-dimensional subspace is sufficient for
this classification task. Therefore, the final three-dimensional
features were obtained by projecting the 59 features into a three-
dimensional principal component subspace. Figure 4 demon-
strates the distribution of the reduced acoustic feature space of
the snores.

Accuracy of the analysis
The performance of our proposed approach yielded an overall
accuracy of 92.17%, with an unweighted average sensitivity of
.8636 and an unweighted average precision of .8909 (Table 2).
Among the four snore types, specificity (.9933) was highest in
type E snores. The area under the receiver operating charac-
teristic curve values of snore types V, O, T, and E were .9982,
.8321, .7507, and .9349, respectively. The F1-score of 0.8763
was obtained as the harmonic mean of the sensitivity and
precision. F1 scores were highest in type V snores and lowest in
type T snores (Table 2). Figure 5 shows the confusion matrix
of the proposed method in VOTE classification. Among the

Figure 3—Complexity level of ZCR-transformed
snoring sound.

Multiscale entropy (MSE) of ZCR-transformed snoring sound time series.
Entropy of type E snores is significantly higher than the other three snore
types (post hoc test indicated P < .05). E = epiglottis, O = oropharyngeal,
T = tongue, V = velum, ZCR = zero crossing rate.

Figure 4—Plot of three-dimensional feature extracted from
the originally high-dimensional acoustic signals.

The final three-dimensional features extracted from the 59-dimensional
acoustic feature. Each axis represents a new combined feature, and each
point represents one snore episode. The features of the four types of
snores have distinctly different distribution spaces, which makes it easier
for SVM classifier to classify them. Each point represents one snore
episode. SMV = support machine vector.
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four snore types, types V and E showed the highest sensitivity
(> 90%), whereas the sensitivity of type T was 72.73%.

DISCUSSION

In this study, we developed a machine-learning model that used
the acoustic and physiological features of snores to classify
snores produced at different vibration locations in the upper
airway.Our proposed approachwas able to capture automatically
the complexity nature of snore sounds generated from different
sites in the upper airway. The overall performance of our model
showed an unweighted average area under the receiver operating
characteristic curve of 87.9%on theMPSSC data set.We believe
our approach can contribute to the automatic classification of
vibration sites from the snore sound signal.

Previous efforts have been made to apply machine-learning
techniques to classify snores. Using the same MPSSC data set
containing data for the four snore types, Amiriparian et al18

proposed a convolutional neural network (CNN) that was used
to capture the characteristics of four types of snoringwhile using
spectral features as input. They achieved an unweighted average
sensitivity of 67% on the test data set. Similarly, Freitag et al19

proposed a CNN paradigm to classify snoring sounds. Their
study differed from that of Amiriparian et al18 in that they
adopted a hybrid “end-to-evolution” approach by combining
deep CNN and evolutionary feature selection. They obtained an
unweighted average sensitivity of 66.5% on the test data set.
Vesperini et al20 used deep scattering spectrum, multilayer
perceptron neural networks, and Gaussian mean supervectors
for VOTE snore classification. As a result, an unweighted
average sensitivity of 74.19% was achieved on the test data set.
Consistent with our study, all these studies considered the
acoustic information of snore; however, the physiological in-
formation contained in the snores was overlooked in these
previous studies. Our study is the first to distinguish snores
generated at different obstructed parts of the upper airway by
combining acoustic and physiological information, which al-
lows our model a more efficient recognition ability to achieve
better classification performance than prior studies.

Our results confirm that vibration sites are correlated with
distinct characteristics of the snoring event. Snores originating
from the epiglottis showed the highest MSE, whereas the MSE
of oropharyngeal snores was the lowest. In clinical practice, the
cardinal difficulty in improving the success rates of surgical

treatment for patients with OSAHS is to target accurately the
excitation location in the upper airway. For example, it has been
proven that treatments for patients whose obstructive site is
located at the soft palate are more successful37,38 and that
treatments for snores produced by the posterior pharyngeal
walls or the tongue base have less effect.39 In contrast, for simple
palatal snorers, treatments that target mainly the hypophar-
yngeal area might not be a wise choice.40,41 Therefore, it is
helpful for clinical interventions to understand the mechanism
of obstruction and obstructive sites in the upper airway. The test
results showed that the model we presented is superior to those
proposed in existing studies for the classification of snores
generated at the four excitation locations, which indicates that it
can be used to locate the generation location of snores. Fur-
thermore, in contrast to DISE, it is more amenable to mass
screening because it is noninvasive and inexpensive.

This study has some limitations. First, the whole airway
cannot be visualized at once, which makes breath-to-breath
labeling difficult. This was a secondary analysis, and our data
were from an existing data set in which all snoring samples were

Table 2—Statistical results of experiment.

Sensitivity Precision Specificity AUC F1

V .9804 .9434 .9063 .9982 .9615

O .8056 .8788 .9692 .8321 .8406

T .7273 .8000 .9871 .7507 .7619

E .9412 .9412 .9933 .9349 .9412

Unweighted average .8636 .8909 .9640 .8790 .8763

AUC = area under the receiver operating characteristic curve, E = epiglottis, F1 = the harmonicmean of precision and sensitivity, O = oropharyngeal, T = tongue,
V = velum.

Figure 5—The confusion matrix of SVM classifier.

E, epiglottis, O = oropharyngeal, SMV = support machine vector, T =
tongue, V = velum.
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limited to a single site. Therefore, many important sources of
obstruction are absent from this study and need further inves-
tigation. Second, some possible scenarios were not included in
the original data set, for example, nonvibration obstruction
sounds due to turbulent flow and release of pressure, collapse
with complete silence, and snores generated from multisites.
Therefore, the accuracy of our approach in the realworldmay be
affected if such sources are the dominant reasons for snore
sounds. According to the VOTE classification scheme,14 for a
simple snorer, snoring usually occurs during a stage of partial
narrowingwithout complete collapse. Therefore, the samples in
the MPSSC data set are limited to partial narrowing according to
the VOTE classification.17 For this primary snoring, snore
sounds can be used to locate the site of vibration for targeted
therapy. The existing data set does not include apneic snore
sounds; therefore, to what extent the excitation location of
snore sounds and the obstruction sites in apnea correlate
remains unexplored. We encourage future studies to address
this gap with other available data sets. Then, for type V
snores, more targeted information, and specific classification
of the site of collapse are needed to make treatment decisions
because, even though they can capture some velopharyngeal
obstruction information to some extent, the degree of ob-
struction and configuration of obstruction are not contained.
Finally, the samples from patients with different classes of
snores were unbalanced, with type V (obstruction at velum
area) and type O (oropharyngeal obstruction) snores being
dominant and type T (obstruction at tongue base) and type E
(obstruction at epiglottis) snores much less sampled; how-
ever, the sample represents real-world distributions, and the
ratio is consistent with clinical results and earlier findings of
the distribution of snore types.39,42 Furthermore, it is note-
worthy that even though the number of training data for both
types T and E was small, type E had the second highest sen-
sitivity and type T the lowest, suggesting that the sample size
does not determine the overall performance of the proposed
technique. Future studies are encouraged to include data with
multilevel obstructions.

Clinical implications
Assessment of the site of snore generation is a major chal-
lenge to decision makers for directing clinical treatment of
snoring and OSAHS. Reports that can truly reflect the status
of the upper airway are not available based solely on DISE
examinations (or other similar evaluation techniques). Al-
though DISE is widely used, it cannot reflect the natural sleep
situation because it is based on artificial sleep, and only a part
of the upper airway can be visualized at one time. The need for
a more convenient and powerful approach to identify the site
of snore generation is of major importance to the field of
sleep-disordered breathing. Here, we propose a novel and
valid approach to systematically locate the site of snore
generation from a single snore sound. This algorithm can
capture the difference of snores generated by different parts
of the upper airway through acoustic and physiological
characteristics of snore sounds. Although our analysis is
based on a simplified classification system named the VOTE
scheme, it can be used to assist in the treatment selection,

especially for those with mild OSAHS because single-level
obstruction is more common in mild OSAHS patients,
whereas in severe OSAHS, a multilevel obstruction is more
characteristic.43–45 Furthermore, our method may enable a
deeper understanding of clinical application value of snoring
sounds. This study shows that locating vibrating sites acous-
tically has great application potential because snoring sounds
contain recognizable physiological information that can reflect
the state of the upper airway. Further studies are needed to
reinforce our findings by applying our model to more specific
and detailed larger database.

CONCLUSIONS

In conclusion, snores can reveal the condition of the upper
airway. The proposed model provides an efficient tool to
classify the snores produced in different upper airway states.
Future studies are needed to determine the feasibility of ap-
plying this model in clinics and general populations.

ABBREVIATIONS

CNN, convolutional neural network
CPAP, continuous positive airways pressure
DISE, drug-induced sleep endoscopy
MFCC, Mel frequency cepstral coefficient
MPSSC, Munich Passau Snore Sound Corpus
MSE, multiscale entropy
OSAHS, obstructive sleep apnea-hypopnea syndrome
PCA, principal component analysis
VOTE, Velum-Oropharyngeal-Tongue-Epiglottis
ZCR, zero crossing rate
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