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Background: Identification of the obstruction site in the upper airway may help in treatment selection for
patients with sleep-disordered breathing. Because of limitations of existing techniques, there is a
continuous search for more feasible methods. Snoring sound parameters were hypothesized to be po-
tential predictors of the obstruction site. Therefore, this review aims to i) investigate the association
between snoring sound parameters and the obstruction sites; and ii) analyze the methodology of re-
ported prediction models of the obstruction sites.
Methods: The literature search was conducted in PubMed, Embase.com, CENTRAL, Web of Science, and
Scopus in collaboration with a medical librarian. Studies were eligible if they investigated the associa-
tions between snoring sound parameters and the obstruction sites, and/or reported prediction models of
the obstruction sites based on snoring sound.
Results: Of the 1016 retrieved references, 28 eligible studies were included. It was found that the
characteristic frequency components generated from lower-level obstructions of the upper airway were
higher than those generated from upper-level obstructions. Prediction models were built mainly based
on snoring sound parameters in frequency domain. The reported accuracies ranged from 60.4% to 92.2%.
Conclusions: Available evidence points toward associations between the snoring sound parameters in the
frequency domain and the obstruction sites in the upper airway. It is promising to build a prediction
model of the obstruction sites based on snoring sound parameters and participant characteristics, but so
far snoring sound analysis does not seem to be a viable diagnostic modality for treatment selection.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Obstructive sleep apnea (OSA) is a common sleep-related
breathing disorder; the reported prevalence of OSA in the general
adult population ranges from 9% to 38% [1]. OSA is characterized by
repeated partial or complete obstruction of the upper airway dur-
ing sleep, which may lead to oxygen desaturation, respiratory
arousals, and non-restorative sleep due to frequent awakenings [2].
Because of patient's complaints and potential health risks, the
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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management of OSA has drawn more attention in the field of sleep
medicine [3]. It has been suggested that identification of the
level(s), degree, and direction/configuration of the obstruction
site(s) in the upper airway is essential in the diagnostic work-up of
OSA patients and the treatment decision-making process. For
instance, patients with complete concentric collapse on palatal
level (CCCp) or lateral oropharyngeal collapse need a significantly
higher continuous positive airway pressure (CPAP) level [4]; pre-
scription of oral appliance (OA) therapy makes more sense in case
of obstruction at the tongue base than in case of CCCp and complete
lateral oropharyngeal collapse [5]; the indication of upper airway
surgery is largely based on anatomically correctable features; and
CCCp is considered an absolute contraindication for upper airway
stimulation [6,7].

Nowadays, nine modalities are frequently used to investigate
possible upper airway obstructions. Among these, drug-induced
sleep endoscopy (DISE) is a unique and dynamic technique. Dur-
ing drug-induced sleep, the upper airway is observed using a
flexible endoscope, and information on upper airway obstruction
can be obtained [8]. However, there are some limitations to DISE,
such as the influence of drug selection on DISE findings [9] and
potential inaccuracy of DISE results due to the difference between
natural sleep and drug-induced sleep [10]. Alternatively, sleep
videofluoroscopy (SVF) is a localization technique that combines
fluoroscopy and video recording, enabling direct visualization of
dynamic airway change [11]. However, because SVF can only pro-
vide two-dimensional lateral views, it cannot explain lateral
movement of the upper airway [12]. In addition, SVF is also per-
formed during drug-induced sleep, which, as mentioned above,
may lead to inaccuracy of results due to the difference between
natural sleep and drug-induced sleep. Airway pressure measure-
ment is a system by which the obstruction site in the upper airway
can be determined during natural sleep. In this system, a pressure
transducer catheter with sensors is inserted through a naris into
the esophagus. The absence of pressure deflection indicates the
presence of obstruction [13]. However, this system can only indi-
cate the lowest obstructive site; higher possible obstruction sites
are left out. In addition, this system gives no information about
abnormal anatomic structures in the obstruction site, such as
Fig. 1. (1.5 column; using color for online version only) Schematic visualization of the upp
the obstruction of the upper airway, either individually or in every possible combination
as retropalatal obstruction or retrolingual obstruction (B). (For interpretation of the refer
article.)
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enlarged tonsils [14]. Airflow shape is reported to be associated
with the obstruction sites as well. According to the contours of the
airflow reference patterns, different obstruction sites can be iden-
tified [15]. However, this method can only be used to identify
single-level obstruction and is not applicable for patients with
multilevel obstructions [15]. Dynamic magnetic resonance imaging
(MRI) is sometimes used for identification of the obstruction sites
in the upper airway during either wakefulness or sleep. This
method, however, creates noise that may keep patients awake, is
costly, and may cause claustrophobic effects [16]. Müller's ma-
neuver, simulated snoring, lateral cephalometry, and modified
Mallampati classification can all be used to evaluate soft tissues
and/or skeletal anatomies while patients are awake and to identify
the obstruction sites in the upper airway. However, previous
studies found that results obtained during wakefulness show poor
agreement with results observed during sleep [17,18]. Because of
these drawbacks of all of these diagnostic methods, there is a
continuous search for less invasive and more feasible methods to
identify the levels, degree, and configuration of obstructions in the
upper airway.

According to the definition of the International Classification of
Sleep Disorders e Third Edition (ICSD-3), snoring is characterized
as “audible vibrations of the upper airway during respiration in
sleep” [19]. Snoring generally occurs during upper airway collapse
and the structures/regions in the upper airway may contribute to
the collapse (Fig. 1). The classical Starling resistor model is
commonly used to explain the mechanism of snoring, hypopnea,
and apnea [20]. In this model (Fig. 2), the pharynx is considered as a
collapsible conduit, which is mounted between a rigid upstream
segment (the nasal cavity) and a rigid downstream segment (the
trachea). The pressure that is applied to the pharynx is from the
tissues surrounding it and, in this model, the surrounding tissues
are considered as a chamber where the air pressure (tissue pres-
sure; Pt) can be controlled. The patency of the collapsible conduit is
determined by its transmural pressure. Previous studies on the
classical Starling resistor model suggested that, during inspiration,
once downstream pressure (Pd) drops below Pt (eg, due to the
excessive inspiratory effort or increased Pt), then an obstruction site
develops and flow limitation occurs [21,22]. In addition, it was
er airway. Velum, oropharynx, tongue base, and epiglottis are commonly involved in
(A). According to the region-based classification, an obstruction can also be classified
ences to color in this figure legend, the reader is referred to the Web version of this



Fig. 2. (Single column; using color for online version only) Schematic visualization of
the classical Starling resistor model. The horizontal conduit with a collapsible segment
represents the airway. The upstream segment represents the nasal cavity and the
downstream segment represents the trachea. Pu is the pressure in the upstream
segment and Pd is the pressure in the downstream segment. The collapsible segment
represents the pharynx and Pt is the pressure that is applied to the pharynx, which is
from the tissues surrounding it. In this model, the surrounding tissues of the pharynx
are considered as a chamber where the air pressure (Pt) can be controlled. (For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 3. (Single column; using color for online version only) Schematic visualization of
Fourier transform. The Fourier transform is an algorithm, by which a complicated
signal in temporal domain (left panel) can be decomposed into sinusoidal oscillations
at distinct frequencies (“Decomposed frequency components”), with each sinusoidal
oscillation having its own amplitude. A spectrum (right panel) is the projection of the
amplitudes and frequencies of the sinusoidal oscillations on a plane. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Z. Huang, G. Aarab, M.J.L. Ravesloot et al. Sleep Medicine 88 (2021) 116e133
found that the obstruction site prevents the reduction in upstream
pressure (Pu; usually equals to atmospheric pressure) that is caused
by the reduction in Pd. Therefore, Pu remains constant [21,22]. In
this case, the inspiratory flow is independent of Pd and is deter-
mined by the difference between Pu and Pt (ie, PuePt), since Pt re-
places Pd as the effective downstream pressure to inspiratory flow
[21,22]. In the classical Starling resistor model, snoring is found to
occur during flow limitation (ie, Pu > Pt > Pd) [21,23,24]. Once Pu
also drops below Pt (eg, due to increased Pt), apnea occurs due to
the cessation of airflow (ie, Pt > Pu > Pd) [21]. However, inconsistent
findings were observed between studies on the classical Starling
resistor model and studies on OSA patients, suggesting that the
classical Starling resistor model still fails to capture the full
complexity of airway collapse [20,22]. Another theorem that
may explain the mechanism of snoring is Bernoulli's principle, but
it is somewhat inaccurate as Bernoulli's principle applies to
changes in flow and pressure through a fixed, rigid constriction.
Bernoulli's principle in snoring was thoroughly discussed in a
previous study [25].

Given the noisy nature, various criteria have been employed in
previous studies to identify snoring sound [26,27]. In the last few
years, more and more studies suggest that snoring sound carries
information about the upper airway and sleep, eg, the presence of
OSA and sleep stage [28,29]. The informative nature of snoring
sound has been reported in OSA-related studies. Acar et al. [30]
reported that the peak frequency (Hz) of snoring sound increased
with the increase of the severity of OSA. Azarbarzin and Moussavi
[31] distinguished OSA snorers from non-OSA snorers based on the
features of snoring sound, eg, average power and zero crossing rate,
and they reported an accuracy of 96.4%. In addition, a positive linear
association between the intensity of snoring sound and the severity
of excessive daytime sleepiness in non-OSA patients was reported
[32].

In general, sound is analyzed in three domains, which are the
temporal domain, the intensity domain, and the frequency domain.
Analyses in the temporal domain address the variation of sound
over time. Sound intensity is defined as the sound power per unit
area, of which the most common unit to measure is decibel (dB). In
digital audio recordings, the amplitudes of sound waves represent
the sound intensity. For research purposes, analyses in the tem-
poral and intensity domains cannot provide enough information of
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a sound signal. This suggests the importance of frequency analyses.
In the frequency domain, a complicated signal in the temporal
domain can be decomposed into different frequency components
to obtain its frequency spectrum using Fourier transform (Fig. 3).
Similar to speech, the acoustic characteristics of snoring sound are
determined by the anatomy of the upper airway [33]. The tension
and length of the vocal cords affect the sound's vibration frequency
in speaking. Similarly, the dynamic properties of the upper airway
walls will influence the vibrations produced in snoring. The
chamber-like anatomy enables the upper airway to act as a reso-
nance system, and different frequencies of the original soundwaves
are either attenuated or amplified in this “resonance chamber”.
Based on the “source-filter theory” [34,35], the hypothesis was
proposed that snoring sound parameters may be potential pre-
dictors of the obstruction sites in the upper airway [36].

To the best of our knowledge, the feasibility of predicting the
obstruction sites in the upper airway based on snoring sound pa-
rameters is not yet fully explored. Therefore, the available literature
was reviewed with the aim to i) investigate the association be-
tween snoring sound parameters and the obstruction sites deter-
mined by objective methods (eg, DISE, dynamic MRI) during sleep;
and ii) analyze the methodology and the participant characteristics
in the studies reporting prediction models of the obstruction sites
as to provide suggestions for further study.

2. Methods

2.1. Search strategy

This systematic review is reported in accordance with the
PRISMA statement (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses; www.prisma-statement.org). The pro-
tocol for this review was registered at PROSPERO (ID:
CRD42020179769). To identify all relevant publications, a system-
atic search was conducted in the bibliographic databases PubMed,
Embase.com, CENTRAL, Web of Science, and Scopus from inception
up to June 23, 2021, in collaboration with a medical information
specialist (CH), who provided help to formulate a comprehensive
search strategy. The search was performed without date and lan-
guage restrictions. The full search strategies for all databases can be
found in Appendix 1 of the Supplementary Material.

http://www.prisma-statement.org
http://Embase.com
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2.2. Inclusion and exclusion criteria

Inclusion criteria:

� Studies on adult OSA patients and/or snorers;
� Randomized Clinical Trial (RCT) studies, cross-sectional studies,
caseecontrol studies, cohort studies, or conference abstracts (if
necessary, authors are approached for full-text);

� Studies that either report the association(s) between snoring
sound parameters and the obstruction sites determined by
objective methods (eg, DISE, dynamic MRI) during sleep, or
report prediction model(s) of the obstruction sites based on
snoring sound parameters.

Exclusion criteria:

� Studies on children or animals;
� No full-text available;
� Reviews, editorials, case reports.
2.3. Study selection

Two reviewers (ZH and NZ) independently screened all titles
and abstracts for eligibility. Differences in judgement were resolved
through a consensus procedure, guided by a third reviewer (AH). In
the full-text review, which included the decision of inclusion/
exclusion of studies, quality assessment, and data extraction, two
reviewers (ZH and NZ) took different responsibilities. ZH per-
formed all the procedures and NZ checked the results. Differences
in judgement were resolved through a consensus procedure guided
by AH.

2.4. Quality assessment and data extraction

During the full-text review of the articles, it was found that all
the included studies on the association between snoring sound
parameters and the obstruction sites were cross-sectional studies.
Hence, the Appraisal tool for Cross-Sectional Studies (AXIS) was
used to assess the methodological quality of these studies, in terms
of introduction, methods, results, discussion, and other [37].
Because AXIS does not provide cut-off points for various quality
grades, according to a previous study [38], studies with a total score
higher than 15 were considered to be of high quality, those of
10e15 were considered to be of moderate quality, while those
scoring less than 10 were considered to be of poor quality. Studies
that were considered as being of “poor quality” were excluded.

For studies that reported prediction models, the Prediction
model Risk Of Bias ASsessment Tool (PROBAST) was used to assess
both the risk of bias and the applicability of the models [39]. The
tool consists of four domains (participants, predictors, outcome,
and analysis) and has 20 questions that facilitate reaching overall
judgement of risk of bias and applicability. A prediction model is
considered “low risk of bias” and/or “low concerns regarding
applicability”, if risk of bias and/or applicability are evaluated as
“low” in all domains. A prediction model is considered “high risk of
bias” and/or “high concerns regarding applicability”, if risk of bias
and/or applicability are assessed as “high” in one ormore domain. A
prediction model is considered “unclear risk of bias” and/or “un-
clear concerns regarding applicability”, if risk of bias and/or appli-
cability are assessed as “unclear” in one or more domain and the
other domains are “low”.

As for data extraction, the following information was extracted
from the studies reporting the association(s) between snoring
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sound parameters and the obstruction sites: (i) country, (ii) sample
size (N), (iii) population, (iv) aim(s), (v) recording of snoring sound,
(vi) snoring sound parameter(s), (vii) method of identification of
the obstruction sites (viii) main finding(s), and (ix) conclusion(s). In
addition to these data, the name of the prediction model was also
extracted for the studies reporting prediction model of the
obstruction sites.

3. Results

3.1. Study selection

The literature search generated a total of 2256 references: 395 in
PubMed, 561 in Embase.com, 28 in CENTRAL, 646 in Scopus, and
626 in Web of science. After deduplication, 1016 references
remained. The flow chart of the search and selection process is
presented in Appendix 2 of the Supplementary Material. Of the
1016 articles obtained from databases and other sources (hand
searching; n ¼ 1), 28 articles were found eligible for inclusion in
this study.

3.2. Quality assessment

The results of the quality assessments can be found in Appendix
3 of the Supplementary Material. Of the 28 included studies, 12
studies reported association(s) between snoring sound parameters
and the obstruction sites in the upper airway. Among these studies,
four [41,44,45,49] were ranked as being of high quality, the other
eight studies [36,40,42,43,46e48,50] were ranked as being of
moderate quality, and no study was excluded because of poor
methodological quality. In short, among the twenty questions that
are included in AXIS, eleven studies did not report sample size
calculation; eleven studies did not report the response rate; eleven
studies did not report any information about non-responders; and
ten studies did not report what method was used to address non-
responders. These were the main reasons why the majority of the
studies were classified as being of moderate quality for the purpose
of this review.

The other 16 studies reported prediction models of the
obstruction sites based on snoring sound parameters. Among
these studies, six [51,52,58,63,64] were identified as being of low
risk of bias and low concern regarding applicability, while the
other ten studies [53e57,59e62,66] were identified as being of
low concern regarding applicability but high risk of bias due to
the small sample size.

3.3. Study characteristics

All included articles were in English. The full-texts of two
German articles and one Korean article were screened, but the
German articles were excluded due to reporting “other aspect of
snoring” while the Korean article was excluded as it was a review
article. Sample size in the included studies ranged from 9 to 219.
The characteristics of included studies reporting the association
between snoring sound parameters and the obstruction sites are
shown in Table 1, the characteristics of included studies reporting
prediction model of the obstruction sites are shown in Table 2.

Of the 16 studies reporting prediction models, one study [53]
built a prediction model using conventional statistical methods and
reported overall accuracy. The other 15 studies built machine
learning models (see below). Of the 15 studies, four studies
[60e62,64] reported overall accuracy and eleven studies used un-
weighted average recall (UAR) to evaluate the accuracy of the ma-
chine learning models due to the unbalanced distribution of
obstruction sites. The UAR was defined as [58]:

http://Embase.com


Table 1
Characteristics of included studies reporting the association between snoring sound parameters and the obstruction sites.

Study Country N Population Aim(s) Recording of snoring
sound

Snoring sound
parameter(s)

Identification of the
obstruction site(s)

Main finding(s) Conclusion(s)

Agrawal et al., 2002
[40]

UK 16 Primary snorer To use observations
during induced
snoring to make
correlations
between sound
frequency and the
site of upper airway
narrowing

Contact condenser
microphone (between
the nasal ala and corner
of the mouth)

DF, center frequency,
and power ratio
(750 Hz)

DISE (VOTE) The center frequencies of
palatal, tonsillar, tongue-
base, and epiglottic snores
were 391 Hz, 445 Hz,
1094 Hz, and 442 Hz,
respectively
The power ratio of palatal,
tonsillar, tongue-base, and
epiglottic snores were 7, 12,
0.2, and 53, respectively
The combination of palate
and tongue snoring showed
both low and high
frequency components,
with a center frequency of
404 Hz

Induced snores contain a
higher frequency
component of sound,
suggesting that DISE may
not accurately reflect
natural snoring

Chang et al., 2014
[41]

Taiwan 9 Patients with
excessive snoring
and sleep-
disordered
breathing

To synchronize
dynamic MRI
signals and acoustic
measurements
aiming to valuate
dynamic upper
airway obstruction
during sleep

Build-in microphone of
MRI (5e20 mm from
patient's mouth)

Sound intensity
(amplitude), soft tissue
vibration time, and
collapse index

Dynamic MRI
(retropalatal,
retroglossal, or
combined)

There was a significant
correlation between the
collapse index and soft
tissue vibration time
(P < 0.03)
The collapse index and soft
tissue vibration time were
significantly different
between pure retropalatal
and combined snoring
(P < 0.0001)

The pilot study proves that
synchronized MRI and
acoustic recordings can
characterize the sites of
airway obstruction during
sleep

Gurpinar et al.,
2020 [42]

Turkey 55 Candidates for OSA
surgical
intervention

To integrate the
physical findings of
the OSAS patients
during DISE with
the snoring sound
analysis of the
susceptible

Smartphone (above the
shoulder of each
subject)

Mean frequency, DF,
and F0

DISE (retropalatal,
retrolingual, or
multilevel)

The mean frequency, F0,
and DF of retrolingual
snoring are significantly
higher than those of
retropalatal snoring
(P ¼ 0.001)
The mean frequency, F0,
and DF of multilevel
snoring are higher than
those of retropalatal
snoring, but the differences
are not significant
(P ¼ 0.419)
The mean frequency, F0,
and DF of multilevel
snoring are significantly
lower than those of
retrolingual snoring
(P ¼ 0.025)

To determine the site of
obstruction using the sound
analysis of snores is a cost-
effective method which can
be done during DISE

Herzog et al., 2014
[43]

Germany 41 Male patients with
suspected sleep-
disordered
breathing

To evaluate the
characteristics of
different types of
snoring sounds in
order to create
algorithms for
acoustic analyses of
snoring sounds

An external condenser
microphone (30 cm
above patient's mouth)

Sound pressure level
(dBA), center
frequency, and
psychoacoustic
parameters (loudness,
sharpness, roughness,
fluctuation strength)

DISE (the first snoring
episode after an apneic
event, tonsillar snoring,
velar snoring, or
obstructive velar
snoring)

Velum snoring showed
lower center frequency
than the other snoring
patterns (P < 0.05)
The sound pressure level of
obstructive velar snoring
was higher than the other
three snoring patterns
(P < 0.05)

Nocturnal snoring might be
differentiated by
psychoacoustic algorithms
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Velar snoring showed
lower loudness than the
other snoring patterns
(P < 0.05)
Tonsil snoring showed
higher sharpness than the
other snoring patterns
(P < 0.05)

Koo et al., 2016 [44] South Korea 32 Male OSA patients To determine the
spectrographic
pattern, sound
intensity (dB), F0,
F1, F2, and F3 of
snoring sounds
caused by different
obstruction sites

Smartphone above the
patient's shoulder

Sound intensity (dB),
spectrographic pattern,
F0, F1, F2, and F3

DISE (retropalatal
or retrolingual)

In spectrograph,
retropalatal obstruction
tended to have sharp
regular peaks, while
retrolingual obstruction
showed gradual onset and
decay
There was no significant
difference in the intensity
of the snoring sounds
between retropalatal and
retrolingual level
obstructions (P ¼ 0.8)
The F1 and F2 of
retrolingual level
obstruction were
significantly higher than
those of retropalatal
obstruction (P < 0.05)

The analysis of formants
will be a useful screening
test for the prediction of
obstruction sites in the
upper airway

Lee et al., 2016 [45] Taiwan 36 OSAHS patients To examine
associations
between acoustic
parameters of
whole night
snoring sounds
during natural
sleep and
obstruction sites
(multi-level and
other levels)
defined by DISE

Non-contact
microphone (100 cm
above patient's head)
was used to record
snoring sounds
simultaneously with
PSG

Snoring index (events/
hour), intensity (dB;
max, mean), mean
frequency, and DF

DISE (VOTE) Participants with more low
frequency snoring events
(�28 events/h) were 7.86
times more likely to have
complete velopharynx
obstruction than
participants with less low
frequency snoring events
(<28 events/h; P ¼ 0.010)
Participants with a higher
mean frequency
(�1220 Hz) were 1.29 times
more likely to have lateral
oropharyngeal wall
obstructions than
participants with a lower
mean frequency (<1220 Hz;
P ¼ 0.013)
Participants with a higher
peak frequency (�1775 Hz)
were 4.80 times more likely
to have complete tongue
base obstructions than
participants with a lower
peak frequency (<1775 Hz;
P ¼ 0.033)
Participants with a higher
mean intensity (�66 dB) at
frequency of 301e850 Hz
were 1.14 times more likely
to have epiglottitis
obstructions than

Snoring sound analysis may
be helpful in determining
obstruction sites

(continued on next page)
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Table 1 (continued )

Study Country N Population Aim(s) Recording of snoring
sound

Snoring sound
parameter(s)

Identification of the
obstruction site(s)

Main finding(s) Conclusion(s)

participants with a lower
mean intensity (<66 dB;
p ¼ 0.020)

Miyazaki et al.,
1998 [46]

Japan 75 Patients with sleep
related respiratory
disorders

To find a way of
predicting the site
of airway
obstruction by
analyzing the
snoring sound
acoustically

Handheld condenser
microphone

F0 Monitoring the
pressure in the upper
airway (soft palate,
tonsil/tongue base,
combined type, or
larynx type)

Average F0 was
102.8 ± 34.9 Hz in the soft
palate snoring,
331.7 ± 144.8 Hz in tonsil/
tongue base snoring,
115.7 ± 58.9 Hz in the
combined snoring, and
249.4 ± 79.7 Hz in larynx
snoring

Acoustic analysis of snoring
sound is useful as a
screening method to
determine the obstruction
site in the upper airway

Osborne et al., 1999
[47]

UK 11 Patients who
underwent DISE

To differentiate
palatal snoring
from non-palatal
snoring

DAT recorder Crest factor DISE (exclusive soft
palate or exclusive
lower segment)

Crest factor over 2.7 were
palatal and below 2.7 were
lower segment

Crest factor is a reliable
indicator of palatal snoring

Quinn et al., 1996
[36]

UK 10 Subjects known to
suffer from heavy
snoring but not
obstructive sleep
apnea

To study palatal
snoring during DISE

Contact microphone
(upper lip)

Center frequency DISE (soft palate or
tongue base)

Palatal snoring showed a
mean center frequency of
less than 420 Hz and a
mean standard deviation of
less 370 Hz
Tongue base snoring
showed a mean center
frequency of higher than
650 Hz and a mean
standard deviation of
higher than 430 Hz

Palatal and tongue base
snorers can be
differentiated from each
other using the criteria of
center frequency greater or
less than 500 Hz and
frequency deviation greater
or less than 400 Hz

Saunders et al.,
2004 [48]

UK 35 Patients
undergoing DISE
with AHI less than
40

To establish
whether acoustic
analysis of snoring
sound could replace
DISE in a clinical
setting

Non-contact
microphone (30 cm
above patient's mouth)

Center frequency DISE (soft palate,
tongue base, or mixed
type)

Central frequency of 90 Hz
could be used to
differentiate palatal snoring
and tongue base snoring
The calculated irregularity
of the sound showed no
correlation with the type of
snoring

Acoustic analysis may be
helpful to differentiate
palatal snoring tongue base
snoring, but it is unlikely to
replace DISE

Won et al., 2012
[49]

South Korea 90 Patients
complaining of
snoring and/or
sleep apnea

To evaluate the
acoustic
characteristics of
snoring according
to obstruction site
determined by SVF

Contact microphone at
parasternal area

F1, F2, intensity (not
specified), pitch, jitter,
and shimmer

SVF (soft palate or
pharyngeal lateral wall,
which included tonsil,
tongue base, epiglottis,
and a combination of
these structures)

The pitch and F1 of tongue
base and epiglottis
obstruction were
significantly higher than
soft palate group (pitch:
P ¼ 0.007 and P ¼ 0.001,
respectively; F1: P ¼ 0.019
and P ¼ 0.047, respectively)
The pitch and F1 of both
soft palate þ tongue base
group and soft
palate þ epiglottis group
were significantly higher
than those of soft palate
group (pitch: P ¼ 0.007 and
P ¼ 0.007, respectively; F1:
P ¼ 0.04 and P ¼ 0.008,
respectively)
No significant difference
was found among the

Pitch and F1 differed
according to site of upper
airway obstruction
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UAR¼
PL

l¼1Recalll
L

where L is the number of classes, and Recalll is the class-specific
recall, ie, the ratio of instances of class l that is classified
correctly of the l -th class.

Machine learning is a subset of artificial intelligence, which fo-
cuses on making predictions using a computer. Based on the
different sample data, different machine learning approaches can
be used. For example, to analyze sample data with labelled outputs,
supervised learning can be used [67]; to analyze sample data
without labelled outputs and to find structures in the data by the
machine learning model itself, unsupervised learning can be used
[68]. In addition, different machine learning classifiers can be used
for different applications. For example, deep neural networks
(DNN) and Gaussian mixture models (GMM) are often used for
automatic speech recognition [69,70], while support vector ma-
chine (SVM) is commonly used for classification and regression
analysis [71].

3.3.1. Participant characteristics
Of the 28 included studies (Tables 1 and 2), six studies

[43,44,50,55e57] only included male patients. Among these
studies, only Xu et al. [50] stated that female patients were
excluded as it is not clear whether gender is a factor that influences
snoring sound parameters. The other studies did not specify why
they only included male patients. It also needs to be noted that, of
the included studies, 13 studies [42,44,45,50e52,58,60e65] only
included OSA patients, eight studies [49,53e57,59,66] included
both OSA patients and primary snorers, three studies [41,43,46]
included patients with sleep-disordered breathing, two studies
[36,40] only included primary snorers, and two studies [47,48]
included patients who underwent DISE.

3.3.2. Methods for the recording of the snoring sound
Of the 28 included studies (Tables 1 and 2), 27 studies digitally

recorded snoring sound and saved recordings on a computer, ie, the
snoring sound captured by a microphone was digitized and saved
on a computer in an audio file format. One study [47] digitally
recorded snoring sound and saved recordings on a digital audio
tape (DAT), which in appearance is similar to a cassette tape but can
record signal digitally. As for the microphone used in these studies,
12 studies [41e45,48,50,53,60e62,66] used a non-contact micro-
phone, and the position of the microphone varied from approxi-
mately 5 mm away from patient's mouth to the ceiling of the room.
Three studies used a contact microphone; two of these studies
[36,40] placed the microphone around the mouth, while the other
study [49] placed the microphone at the parasternal area. In the
other 13 studies, the position of the microphone was not
mentioned.

3.3.3. Methods for the identification of the snoring sound
As for the identification of snoring events (Tables 1 and 2), 16

studies [36,41,43,48e50,53e57,59e62,66] manually selected snor-
ing events from recordings. Six machine learning studies
[51,52,58,63e65] used a publicly-available snoring sound corpus
(Munich Passau Snore Sound Corpus [MPSSC]), which was devel-
oped for a sub-challenge in the INTERSPEECH 2017 Computational
Paralinguistics Challenge [77]. In order to prepare the snoring
sound corpus, an algorithm was used to identify audio events in
sound recordings that were recorded during DISE. Then, an expe-
rienced researcher listened to all sound episodes and classified
them manually as either snoring sound or other sound. Gurpinar
et al. [42] and Lee et al. [45] employed an automatic detection



Table 2
Characteristics of included studies reporting prediction models of the obstruction sites.

Study Country N Population Aim(s) Recording of snoring
sounds

Snoring sound
parameter(s)

Identification of the
obstruction site(s)

Model
(classifier)

Main finding(s) Conclusion

Amiriparian
et al., 2017
[51]

Germany 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To assess the possibility
to classify snoring
sound based on the
combination of
spectrograms and pre-
trained CNN

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed
microphone on
forehead

Deep spectrum
features for all
combinations of
CNN-descriptors
and spectrogram
color maps (jet:
varying from blue
to green to red;
gray: varying from
black to grey to
white; viridis:
varying from blue
to green to yellow)

DISE (VOTE) SVM A UAR of 67% was
achieved based on the
combination of CNN
descriptor AlexNet fc7
and viridis color map

Using the deep
spectrum feature
extraction method and
linear SVM as a
classifier, it was able to
outperform the
baseline for the sub-
challenge

Demir et al.,
2018 [52]

Turkey 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To investigate the use
of low-level image
texture features in
classification of snore
sounds

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed
microphone on
forehead

LBP and HOG DISE (VOTE) SVM A UAR of 72.6% was
obtained by combining
LBP Features and HOG
Extraction

Low level image texture
features (LBP and HOG)
are reliable for snoring
sound classification

Peng et al.,
2017 [53]

China 74 Patients diagnosed
with OSA or primary
snoring

To explore the
possibility of using the
acoustic parameters
to differentiate the
sources of snoring
sounds

Non-contact
microphone (30 cm
above patient's mouth)

F0, F1, F2, and F3 DISE (VOTE; palatal
snoring, mix type of
palatal and lateral
wall snoring, lateral
snoring)

AUC, NPV, PPV,
and overall
accuracy

The overall accuracy of
F0 was 60.8%
The overall accuracy of
F2 was 62.4%

F0 might be used to
distinguish palatal
snoring sound from
non-palatal snoring
sound. F2 is less
sensitive than F0

Qian et al., 2016
[54]

Germany 24 Subjects diagnosed
with primary snoring or
OSA

To compare wavelet
feature set with some
frequently-used
acoustic
features

Headset microphone Wavelet features
(variance, length,
and entropy of
wavelet
coefficients) and
frequently-used
features (F0, F1, F2,
F3, MFCCs, power
ratio [800 Hz], and
crest factor)

DISE (VOTE) SVM A UAR of 71.2% was
achieved using wavelet
feature set, which
outperformed other
frequently-used feature
sets

The classifier model
based on wavelet
feature set
outperformed the
classifier model based
on conventional feature
sets

Qian et al., 2016
[55]

Germany 40 Male patients
diagnosed with OSA or
primary snoring

To systematically
compare different
acoustic features,
and classifiers for their
performance in the
classification of the
excitation location of
snore sounds

Headset microphone
and handheld
microphone

Crest factor, F0, F1,
F2, F3, SFFs, SER,
MFCCs, power ratio
(800 Hz), EMDF,
and WEF

DISE (VOTE) K-NN, LDA,
FNN, SVM, RF,
ELM, and KELM

The best classification
performance is
achieved by a
combination of all
feature sets with RF
classifier (UAR of 78%)

The results show that
multi-feature analysis
is a promising means to
help identifying the
anatomical
mechanisms of snore
sound

Qian et al., 2017
[56]

Germany 40 Male patients
diagnosed with OSA or
primary snoring

To evaluate
two kinds of wavelet
features for their
performance when
classifying snore
sounds

Headset microphone
and handheld
microphone

WTE and WPTE DISE (VOTE) SVM, k-NN,
LDA, RF, ELM,
KELM, MLP, and
DNN

WTE features achieved
the highest UAR of
60.4% using SVM

The state-of-the-art
machine learning
methods including
were not as efficient
when compared to
conventional classifiers
(e. g., SVM)

Qian et al., 2018
[57]

Germany 40 Male patients
diagnosed with OSA or
primary snoring

To compare the
performance of each
kind of feature set

Headset microphone
and handheld
microphone

Crest factor, SERs,
F1, F2, F3, MFCCs,
power ratio
(800 Hz), WTE,
WPTE, WEF

DISE (VOTE) SVM, K-NN,
LDA, RF, ELM,
KELM, MLP, and
DNN

The highest UAR of
72.8% was obtained by
the combination of
SERs feature set and
DNN classifier

There are no significant
differences between
varied classifiers when
fed with a same feature
set
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The combination of
SERs feature set and
DNN classifier can
present the best
performance

Qian et al., 2019
[58]

Germany 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To test a novel method
based on
multiresolutionWT and
BoAW approach

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed
microphone on
forehead

Wavelet features
(WTE and WPTE)
and conventional
features (F1, F2, F3,
MFCCs, SERs, and
SFFs)

DISE (VOTE) Naïve Bayes The UAR based on
wavelet features was
69.4%

The machine listening
model based on
wavelet features
outperformed the
model based on
conventional snoring
sound parameters

Schmitt et al.,
2016 [59]

Germany 24 Subjects diagnosed
with primary snoring or
OSA

To improve classifier
model

Headset microphone MFCCs, F1, F2, F3,
and wavelet
features (energy,
variance, waveform
length, and entropy
of wavelet
coefficients)

DISE (VOTE) SVM The combination of
MFCCs, formants, and
wavelet-based features
achieved an UAR of
79.5%

The combination of
MFCCs, formants, and
wavelet-based features
are suitable for the
classification of snore
sounds

Sebastian et al.,
2019 [60]

Australia 13 OSA patients To use snoring data to
classify three sites
(lateral wall, palate, and
tongue base) of
obstruction
in the upper airway.

Microphone placed on
the ceiling above the
patient's bed during
PSG

MFCCs based
feature set

Airflow shape
(lateral wall, palate,
and tongue base)

GMM The model achieved an
overall accuracy of
78.9%

Acoustic properties
of snoring sound are
likely helpful in
identifying different
obstruction sites

Sebastian et al.,
2020 [61]

Australia 45 OSA patients To automatically
classify
OSA patients into four
categories based on the
predominant site-of-
collapse with snore
data

Microphone placed on
the ceiling above the
patient's bed during
PSG

MFCCs and Chroma
features

Airflow shape
(palate, lateral wall,
tongue base, and
multi-level)

LDA The model achieved an
overall accuracy of 65%

The snore signal
analysis can be used
to identify the
predominant site-of-
collapse in OSA patient

Sebastian et al.,
2020 [62]

Australia 58 OSA patients to automatically
classify OSA patients
into four categories
based on the
predominant site-of-
collapse of the
hypopnoea events of a
night's
recording using snore
data

Microphone placed on
the ceiling above the
patient's bed during
PSG

F0, MFCC, spectral
entropy

Airflow shape
(palate, lateral wall,
tongue base, and
multi-level)

LDA The model achieved an
overall accuracy of 62%

The results
demonstrate that the
audio signal recorded
during sleep can
successfully identify
the site-of-collapse in
the upper airway

Sun et al., 2020
[63]

China 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To develop an
algorithm that
distinguishes VOTE
snoring

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed
microphone on
forehead

MFCC of the trend
of the spectrum

DISE (VOTE) SVM By using the MFCC of
the trend of the
spectrum, the proposed
approach achieves a
UAR of 87.5%

The MFCC of the trend
of the spectrum is a
promising feature for
capturing the
characteristics of
snoring

Sun et al., 2021
[64]

China 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To develop an
algorithm to improve
the accuracy of locating
an obstructive site by
capturing the
information of the state
embedded in snoring

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed
microphone on
forehead

Transformed signal
and MFCC

DISE (VOTE) SVM The model yielded an
overall accuracy of
92.2%

The characteristics of
snores are related to
the state of the upper
airway

Vesperini et al.,
2018 [65]

Italy 219 Publicly available snore
sound corpus (MPSSC)
based on OSA patients

To identify the
type of snoring among
four target classes
representing the snore

Headset microphone,
stand-mounted
microphone, handheld
microphone, and fixed

SCAT DISE (VOTE) DNN A UAR of 67.7% was
obtained by combining
SCAT and DNN model

The DNN based
classifier in
combination with SCAT
is an effective means to

(continued on next page)
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algorithm to extract snoring sounds. Osborne et al. [47] only stated
that snoring events were confirmed on DISE video. The other three
studies [40,44,46] did not mention based on which criterion the
snoring sounds were identified.

3.3.4. Snoring sound parameters
The acoustic characteristics of sound can be divided into three

domains, which are the temporal, intensity, and frequency do-
mains. Of the included studies, various snoring sound parameters
in all domains were used (Table 1, Table 2). The explanations of all
snoring sound parameters are shown in Table 3 and Table 4. It was
noted that five studies included snoring sound intensity (sound
pressure level), but different units were used. Koo et al. [44] and Lee
et al. [45] used decibel (dB) as unit to describe sound intensity,
whereas Herzog et al. [43] used A-weighted decibel (dBA) for sound
intensity. A-weighting is characterized by attenuation of low fre-
quency (<1000 Hz) sounds as to imitate sound intensity perceived
by the human ear [78]. Won et al. [49] did not specify which unit
they used to describe sound intensity. Chang et al. [41] used the
amplitude of the soundwave as a representation of sound intensity.
In addition, two studies [43,49] also used psychoacoustic parame-
ters, which is a branch of psychophysics involving the scientific
study of sound perception and audiology, ie, how humans perceive
various sounds [72,73] (Table 3). The psychoacoustic parameters
also can be divided into intensity domain (loudness and shimmer;
Table 3) and frequency domain (jitter, pitch, and sharpness;
Table 3).

3.3.5. Methods and criteria for the identification of the obstruction
sites

Of the 28 included studies (Table 1, Table 2), seven studies used
different methods (dynamic MRI [41], monitoring pressure [46,50],
SVF [49], and airflow shape [60e62]) and different criteria to locate
the obstruction sites. The other 21 studies used DISE to identify the
obstruction sites. Of the 21 DISE studies, seven studies
[36,42e44,47,48,66] used different criteria to classify the obstruction
sites; 14 studies used the VOTE classification [40,45,51e59,63e65].
By using the VOTE classification, not only the level (velum, oropha-
ryngeal lateral wall, tongue base, and epiglottis), but also the degree
(no obstruction [collapse less than 50%], partial obstruction [collapse
between 50% and 75%], and complete obstruction [collapse more
than 75%]) and configuration (anteroposterior [A-P], lateral, and
concentric) of the obstruction sites can be assessed [79].

As for the degree of the obstruction, 18 studies
[36,40,41,46e50,53e57,59e62,66] did not indicate the degree of
the obstruction. Seven studies [42,51,52,58,63e65] only included
patients with partial obstruction in the upper airway. Koo et al. [44]
only included obstruction sites with collapse more than 75%. Lee
et al. [45] included both partial (77e99%) and complete (100%)
obstruction sites. In addition to velar snoring and tonsillar snoring,
Herzog et al. [43] also included obstructive velar snoring and
snoring terminating an apnea event. No study distinguished the
configuration of the obstruction site. It needs to be noted that all 28
studies included snorers whose obstruction site(s) is (are) also the
excitation/vibration site(s) of snoring sound. Of the 28 studies
(Tables 1 and 2), 17 studies [36,43,44,47,50e52,54e60,63e65] only
included snorers with single-level obstruction, while the other
eleven studies [40e42,45,46,48,49,53,61,62,66] included snorers
with both single-level obstruction and multilevel obstruction, ie,
snoring soundwas generated by the vibration of more than one site
in the upper airway.

Another point that needs to be noted is that, of the 28 included
studies, all snoring sounds were recorded simultaneously with the
identification of the obstruction sites in the upper airway, except
for the studies from Lee et al. [45] and Sebastian et al. [60e62], in



Table 3
Explanations of the snoring sound parameters that are used in studies reporting the association between snoring sound parameters and the obstruction sites.

Domain Parameter Explanation

Temporal Duration of soft tissue vibration [41] The duration of soft tissue vibration obtained by measuring the duration of snoring sound
Intensity Crest factor [47] Crest factor indicates how extreme the peak of a sound wave is. Crest factor of 1 indicates no peaks and

higher crest factors indicate peaks. Crest factor is the peak amplitude of the waveform divided by the root
mean square (RMS) value of the waveform

Crest factor ¼ jAmpPeakj
AmpRMS

jAmpPeakj ¼ the absolute peak amplitude
AmpRMS ¼ the RMS of amplitudes

Intensity Sound pressure level (SPL; also known
as sound intensity) [43]

A logarithmic measurement of the effective pressure of a sound relative to a reference value

dBSPL ¼ 20� log 10

 
Sound pressureRMS

Sound pressureref

!
Sound pressureRMS ¼ the RMS of sound pressure
Sound pressureref ¼ the reference sound pressure

Frequency Center frequency [40] Ameasure of a central frequency between the upper and lower cutoff frequencies. It is usually defined as the
mean of the lower cutoff frequency and the upper cutoff frequency of a band-pass system or a band-stop
system

Center ferquency ¼
R Fs=2
0 fPðf ÞdfR Fs=2
0 Pðf Þdf

Pðf Þ ¼ spectral power density
Fs ¼ sampling frequency
df ¼ the standard deviation for the frequency range

Frequency Dominant frequency (DF; also known as
peak frequency) [42]

The frequency that carries the most energy, ie, the frequency with the largest amplitude on a spectrum

Frequency Fundamental frequency (F0) [44] The lowest frequency of a waveform. Inmathematics, the F0 of a signal is the greatest common divisor (GCD)
of all the frequency components contained in a signal

Frequency Formants (F1, F2, F3) [44] A group of frequencies amplified by a resonator, ie, three specific frequencies of snoring sound that are
amplified by resonating in the upper airway

HðzÞ ¼
1

1�Pp
q¼1aqz

�q

aq (q ¼ 1, 2, 3, …, p) ¼ the parameters of linear predictive coding (LPC), one of the most powerful speech
analysis techniques

Frequency Mel-frequency cepstral coefficients
(MFCCs) [55]

MFCCs is a set of coefficients that are derived from a spectrum, which can better represent human's
perception to sound, because the Mel scale approximates the human auditory system's response
MFCCs are commonly derived as follows:
1. Take the Fourier transform of (a windowed excerpt of) a signal
2. Map the powers of the spectrum obtained above onto the Mel scale, using triangular overlapping
windows
3. Take the logs of the powers at each of the Mel frequencies
4. Take the discrete cosine transform of the list of Mel log powers, as if it were a signal
5. The MFCCs are the amplitudes of the resulting spectrum

Frequency Power ratio [57] The relative amount of sound emanating below and above a certain frequency

Power ratio800 ¼ log 10

P800
fi¼0ð

���Ampfi

���Þ2Pfc
fi¼800ð

���Ampfi

���Þ2
Power ratio800 ¼ the power ratio at the frequency of 800 Hz
fc ¼ the cut-off frequency of the snoring sound spectrum���Ampfi

��� ¼ the absolute amplitude of the spectrum at the frequency of fi
- Collapse index [41] The smallest area percent of the axial airway during snoring, obtained in dynamic MRI report
- Snoring index [45] The number of snore events per hour during sleep (events/hour)
- Psychoacoustic parameters [72,73] Psychoacoustics is the branch of psychophysics involving the scientific study of sound perception and

audiology, ie, how humans perceive various sounds
Intensity - Loudness It is the counterpart of sound pressure level (see below) in psychoacoustics, measured in phon. It is the

subjective perception of sound pressure by humans

N ¼ R24Bark

0
N0dz

N ¼ loudness
N0 ¼ specific loudness
dz ¼ differential

Intensity - Shimmer A measurement for the instability of intensity
Frequency - Jitter A measurement of the instability of frequency
Frequency - Pitch Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale
Frequency - Sharpness It is a measurement of the high frequency content of a sound, measured in acum. The bigger the proportion

of high frequencies, the “sharper” the sound

S ¼ 0:11
R 24Bark
0 N0gðzÞzdzR 24Bark

0 N0dz
S ¼ Sharpness
gðzÞ ¼ critical band rate
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Table 4
Explanations of the snoring sound parameters that are used in studies reporting prediction models of the obstruction sites.

Domain Parameter Explanation

Temporal-frequency Histogram of Oriented Gradients (HOG)
and Local Binary Pattern (LBP) [74]

LBP is a type of visual descriptor used for classification in computer vision, and HOG is a feature
descriptor used in computer vision and image processing for the purpose of object detection. The
combination of LBP and HOG can extract distinctive features from the spectrogram images of
snoring sound and improve the detection performance

Temporal-frequency Chroma features [75] Chroma features are the representation of a music audio. The entire spectrum of the music audio is
projected onto 12 bins, representing 12 different semitones (or chroma) of the musical octave

Temporal-frequency Deep scattering spectrum (SCAT) [76] An efficient representation of an audio signal based on the scattering transform, which is a new
time-frequency signal processing tool

Temporal-frequency Deep spectrum features [51] Visual representations for audio data, ie, plots of spectrograms or chromagrams, that are drawn from
DeepSpectrum, which is a Python toolkit

Frequency Empirical Mode Decomposition-Based
Features (EMDF) [55]

Empirical Mode Decomposition (EMD) is an adaptive time-space analysis method suitable for
processing series that are non-stationary and non-linear. EMDF include the subband EMD energy
ratio and the entropy of the subband EMD energy ratio
EMDratioðkÞ ¼ Ek=E
HEMDratio

¼ � P
k¼1

EMDratioðkÞlog 10ðEMDratioðkÞÞ

EMDratio ¼ subband EMD energy ratio
HEMDratio

¼ entropy of the subband EMD energy ratio
Ek ¼ the energy (sum of squares) of the k -th level intrinsic mode functions (IMFs) decomposed by
EMD from the snoring sound
E ¼ the total energy of the whole snoring sound within EMD

Frequency Spectral entropy [62] The spectral entropy represents the spectral power distribution of a signal and measures how
sinusoidal the signal is

Frequency Subband energy ratio (SER) [57] SER describes the relative energy distribution in subbands of the snoring sound spectrum

SER1000ðjÞ ¼
P1000j

fi¼1000j�1ð
���Ampfi

���Þ2Pfc
fi¼0ð

���Ampfi

���Þ2
SER1000ðjÞ ¼ 1000 Hz SER feature set
j ¼ 1, 2, 3, …, 8.
fc ¼ the cut-off frequency of the snoring sound spectrum���Ampfi

��� ¼ the absolute amplitude of the spectrum at the frequency of fi
Frequency Wavelet transform (WT) [54e58] WT is a tool for the analysis of signals in frequency domain. Different with the fixed window in

Fourier transform, WT has flexible window, by which a higher time resolution can be provided for
high frequency components and a higher frequency resolution can be provided for low frequency
components

Frequency - Wavelet packet transform energy
(WPTE)

Wavelet packet transform (WPT) is a kind of WT, by which both the high frequency component and
low frequency component of a signal can be decomposed
The WPTE is calculated based on WPT coefficients (see below for the information about wavelet
coefficients):

Efl;m
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nðWl;m;nÞ2

Nm

s
;n ¼ 0;1; 2;…;2l�1

Wl;m ¼ WPT coefficients obtained from the signal at the subspace Vl;m

Nm ¼ the number of wavelet coefficients in the m -th decomposition level
Frequency - Wavelet transform energy (WTE) The WTE is calculated based on WT coefficients:

bEbf l
¼ ðcWlÞ2PLmax

l¼1 ðcWlÞ2cWl ¼ coefficients generated by WT at the l-th decomposition level
Lmax is the maximum level for wavelet decomposition

Frequency - Wavelet coefficients [54e58] Wavelet analysis is a measurement of similarity between the selected wavelet and the original
function. The wavelet coefficients indicate how close the function is to the wavelet at each
decomposition level

Z. Huang, G. Aarab, M.J.L. Ravesloot et al. Sleep Medicine 88 (2021) 116e133
which the snoring sounds were recorded during polysomnography
(PSG).

3.4. Association between snoring sound parameters and the
obstruction site

3.4.1. Parameters in temporal domain
Of the included studies, only one study, whichwas classified as a

high-quality study, reported the association between the snoring
sound parameters in temporal domain and the obstruction site in
the upper airway. Chang et al. [41] used dynamicMRI to identify the
obstruction site and found that there was a significant correlation
between collapse index (ie, the smallest percent area of the axial
airway during snoring; Table 3) and soft tissue vibration time
(P < 0.03), and that the collapse index and soft tissue vibration time
128
were significantly different between pure retropalatal and com-
bined snoring (P < 0.0001). In summary, the available studies are
not indicative of association between the obstruction sites in the
upper airway on the one hand and the snoring sound parameters in
temporal domain on the other hand.

3.4.2. Parameters in intensity domain
Four studies reported findings of the association between

snoring sound intensity and obstruction sites identified using DISE.
Lee et al. [45] found that participants with a higher mean intensity
(�66 dB) at a frequency of 301e850 Hz were 1.14 times more likely
to have epiglottic obstruction than participants with a lower mean
intensity (<66 dB; P ¼ 0.02). However, Koo et al. [44] demonstrated
that there was no significant difference in the intensity of the
snoring sounds between retropalatal and retrolingual level
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obstructions (P ¼ 0.8). Two moderate-quality studies from Herzog
et al. [43] and Osborne et al. [47] also reported the associations
between snoring sound intensity and the obstruction sites. Herzog
et al. [43] found that the sound pressure level of obstructive velar
snoring was higher than those of velar snoring and tonsillar snoring
(P < 0.05), and that velar snoring showed lower loudness (Table 3)
than that of tonsil snoring (P < 0.05). Osborne et al. [47] reported
that a crest factor of 2.7 can be used to differentiate palatal snoring
from snoring generated from lower segments in the upper airway.
In summary, the available studies are not indicative of association
between the obstruction sites in the upper airway on the one hand
and the snoring sound parameters in intensity domain on the other
hand.

3.4.3. Parameters in frequency domain
The high-quality studies from Lee et al. [45] and Koo et al. [44]

also reported the associations between the characteristic fre-
quencies of snoring sound and the obstruction sites. Lee et al. [45]
found that participants with more low-frequency snoring events
were more likely to have velopharyngeal obstruction than partici-
pants with less low-frequency snoring events (P ¼ 0.010). In
addition, participants with a higher mean frequency were more
likely to have lateral oropharyngeal wall obstructions than partic-
ipants with a lower mean frequency (P ¼ 0.013). Koo et al. [44]
reported that the first and second formants (F1 and F2; Table 3) of
retrolingual level obstruction were significantly higher than those
of retropalatal obstruction (P < 0.05), suggesting that the charac-
teristic frequencies of the snoring sound generated from the lower
part of the upper airway was higher than those of the snoring
sound generated from the upper part of the upper airway. This
finding was supported by the SVF study fromWon et al. [49], which
was identified as high-quality study as well. In that study, it was
found that the pitch and F1 of tongue base and epiglottis obstruc-
tion were significantly higher than those of the soft palate group
(P < 0.05), while there was no significant difference in jitter and
shimmer (Table 3) among different groups (P > 0.05). Moderate-
quality studies also confirmed this finding. The DISE study from
Gurpinar et al. [42] found that the mean frequency, fundamental
frequency (F0; Table 3), and dominant frequency (DF; Table 3) of
retrolingual snoring were significantly higher than those of retro-
palatal snoring (P ¼ 0.001). Xu et al. [50] identified obstruction
site(s) bymonitoring the pressure in the upper airway and reported
that the mean of DF and center frequency (Table 3) of the first
snoring sounds after lower-level obstructive apneas were higher
than those after upper-level obstructive apneas (P < 0.05). The DISE
study from Herzog et al. [43] found that velum snoring had lower
center frequency and sharpness (Table 3) than tonsillar snoring
(P < 0.05). In addition, both DISE studies from Quinn et al. [36] and
Saunders et al. [48] reported the lower center frequency of palatal
snoring than that of tongue base snoring. The only deviating result
was reported in another DISE study from Agrawal et al. [40], in
which the center frequencies of palatal, tonsillar, tongue-base, and
epiglottic snores were reported to be 391 Hz, 445 Hz, 1094 Hz, and
442 Hz, respectively.

Another finding was that multilevel obstruction that consisted
of the upper-level obstruction and lower-level obstruction in the
upper airway, which were found to generate snoring sounds with
relatively low characteristic frequencies and relatively high char-
acteristic frequencies, respectively, generated snoring sounds with
medium characteristic frequencies. Results from all DISE studies,
the SVF study, and the upper airway pressure study supported this
finding. The high-quality SVF study fromWon et al. [49] found that
the pitch and F1 (Table 3) of both the soft palate þ tongue base
group and the soft palate þ epiglottis group were significantly
higher than those of the pure soft palate group (P < 0.05). The
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moderate-quality DISE study from Gurpinar et al. [42] found that
the mean frequency, F0, and DF of multilevel snoring are signifi-
cantly lower than those of retrolingual snoring (P ¼ 0.025) and are
higher than those of retropalatal snoring, respectively, but the
differences with retropalatal snoring are not significant (P ¼ 0.419).
In addition, another DISE study [40] reported that the DF and center
frequency were 137 Hz (range: 105e189 Hz) and 391 Hz (range:
253e1027 Hz) in palatal snoring, 1243 Hz (range: 1215e1277 Hz)
and 1094 Hz (range: 1059e1200 Hz) in tongue base snoring, and
190 Hz (range: 115e223 Hz) and 404 Hz (312e605 Hz) in mixed
palate and tongue snoring. The moderate-quality upper airway
pressure study from Miyazaki et al. [46] reported that the average
F0 was 102.8 ± 34.9 Hz in soft palate snoring, 331.7 ± 144.8 Hz in
tonsil/tongue base snoring, and 115.7 ± 58.9 Hz in mixed snoring.

In summary, available evidence points toward associations be-
tween the snoring sound parameters in frequency domain and the
obstruction sites in the upper airway. It is found that the charac-
teristic frequencies (center frequency, DF, F1, F2, mean frequency,
and pitch; Table 3) of the snoring sound generated from the lower
level of the upper airway are higher than those of the snoring sound
generated from the upper level of the upper airway, and that
multilevel obstruction that consists of the upper-level obstruction
and lower-level obstruction in the upper airway generates snoring
sounds with medium characteristic frequencies (center frequency,
DF, F0, F1, mean frequency, and pitch; Table 3).

3.5. Prediction model of the obstruction site based on snoring sound
parameters

In the present review, in addition to the above-mentioned studies
on the associations between snoring sound and obstruction site(s),
16 predictionmodel studies were included as well. Of the 16 studies,
13 studies used DISE to identify the obstruction sites, while three
studies from Sebastian et al. [60e62] identified the obstruction sites
based on the airflow shape. In predictionmodel studies, the accuracy
of the prediction model is usually reported. Peng et al. [53] built a
predictionmodel based on F0 and formants (F1, F2, F3; Table 3) using
conventional statistical methods. The authors found that F0 and F2
can be used to differentiate palatal snoring from mixed type (palatal
snoring þ lateral wall snoring) and pure lateral wall snoring. The
overall accuracy of F0 and F2 were 60.8% and 62.4%, respectively.
The three studies from Sebastian et al. [60e62] built machine
learning models based on Mel-frequency cepstral coefficients
(MFCCs; Table 3), MFCCs þ Chroma features (Table 3, Table 4),
MFCCs þ F0 þ spectral entropy (Table 3, Table 4), respectively, as to
classify soft palate, lateral wall, and tongue base snoring. The authors
reported that the respective overall accuracies of the three models
were 78.9%, 65%, and 62%. Vesperini et al. [65], Sun et al. [63,64], and
Zhang et al. [66] built prediction models based on spectrum-related
characteristics (Table 4) and reported an UAR of 67.7% [65], an UAR of
87.5% [63], an overall accuracy of 92.2% [59], an accuracy of 89.8%
[66], respectively.

The other eight studies were performed by a same team. The
authors extensively tested the performance of machine learning
models with different classifiers and snoring sound parameters;
the reported UAR ranged from 60.4% [56] to 79.5% [59]. The snoring
sound parameters in these studies included conventional acoustic
parameters [54,58] (eg, crest factor, F0, MFCCs; Table 3), newly used
snoring sound parameters [56,57] (eg, wavelet transform energy
[WTE], wavelet packet transform energy [WPTE]; Table 4), and
spectrum-related characteristics in other machine learning models
[51,52] (eg, deep spectrum features, Local Binary Pattern [LBP],
Histogram of Oriented Gradients [HOG]; Table 4). The machine
learning models included conventional classifiers [52,54] (eg,
support vector machine [SVM]) and the state-of-the-art classifiers
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[56,57] (eg, Deep Neural Networks [DNN]). The authors concluded
that there was no significant difference between different classi-
fiers when fed with a same feature set [57]. In addition, it was
found that the classifier model based on wavelet features out-
performed the model based on conventional snoring sound pa-
rameters [58], and that multi-frequency feature (MFCCs, formants,
and wavelet-based features; Table 3, Table 4) analysis was a
promisingmeans to help identifying the anatomical mechanisms of
snoring sound [59].

In summary, the reported accuracies of prediction models are
promising. For machine learning models, there was no significant
difference between different classifiers when fed with a same
feature set, and multi-feature analysis showed better performance
in the prediction of the obstruction sites.

4. Discussion

Previous studies reported the informative nature of snoring
sound and hypothesized that snoring sound parameters are po-
tential predictors of the obstruction sites in the upper airway.
Because of the limitations of the existing diagnostic modalities (see
Introduction), researchers and clinicians try to predict the
obstruction sites in the upper airway by analyzing snoring sound
parameters. This method can provide information on the anatomy
of the upper airway during natural sleep. In addition, it is more
affordable and patient-friendly than the majority of the existing
modalities, since it only needs a snoring sound recording during
sleep; no drugs or other instruments are needed. In theory, snoring
sound analysis seems a feasible method to predict the obstruction
sites, but its feasibility has not been investigated. Therefore, the
present review aimed to i) investigate the association between
snoring sound parameters and the obstruction sites determined by
objective methods, eg, DISE or dynamic MRI; and ii) analyze the
methodology and the participant characteristics of the studies
reporting prediction models for the obstruction sites as to provide
suggestions for further study.

4.1. Association between the characteristic frequencies of snoring
sound and the obstruction site

One of the main findings of this review is that the characteristic
frequencies (center frequency, DF, F1, F2, mean frequency, and
pitch; Table 3) of the snoring sound generated from the lower level
of the upper airway were higher than those of the snoring sound
generated from the upper level of the upper airway. This finding is
partially supported by another systematic review, which reported
that snoring sound that originated from the epiglottis level had a
higher pitch than palatal snoring [80]. Another finding is that
multilevel obstruction that consisted of the upper-level obstruction
and lower-level obstruction in the upper airway generated snoring
sounds with medium frequencies (center frequency, DF, F0, F1,
mean frequency, and pitch; Table 3). It has been known that the
dimensions of a tube have important effect on the resonance fre-
quencies [81], where a smaller and narrower tube will lead to
higher resonance frequencies. The influence of the dimensions of
the upper airway on breathing sound has been reported as well.
Rembold and Suratt found that children who generated high-
frequency inspiration sounds had a significantly narrower upper
airway (P ¼ 0.02) [82].

4.2. Association between snoring sound intensity and the
obstruction site

Results from the included studies are not indicative of an as-
sociation between snoring sound intensity and the obstruction
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sites. This may be due to the differences caused by different
recording systems used in the studies. In addition, Saha et al. [83]
reported that the only factor that may positively and significantly
correlate to snoring sound intensity was the degree of the upper
airway narrowing. This was reported by Chang et al. [41] as well. In
another study from Ng et al. [84], the authors investigated the
impact of changing the cross-sectional areas of the pharynx and
oral cavity on snoring sound, and found that narrowing the
pharyngeal airway consistently increased the amplitude of F1.
Taken together, these results suggest that the effect of the degree of
the upper airway obstruction on snoring sound should be taken
into consideration in further studies.

4.3. Influence of participant characteristics on snoring sound

A point that needs to be noted is that, in the prediction model
studies, the authors included snoring sound parameters, but did
not include participant characteristics, which would have helped
to improve the prediction model. The influence of participant
characteristics on snoring sound has been reported. Azarbarzin
and Moussavi [85] found that gender, body mass index (BMI),
height, and apnea hypopnea index (AHI) were the parameters that
can influence snoring sound significantly (P < 0.05). This finding
was also supported by other studies [86e89]. Among these
studies, the positive association between snoring sound intensity
and AHI was thoroughly discussed [86,87]. Wilson et al. [88] re-
ported that the mean snoring sound intensity was significantly
higher for men than for women (P < 0.05), indicating an influence
of gender on snoring sound. BMI was reported to be positively
associated with snoring sound intensity in studies from Peng et al.
[87] and Wilson et al. [88]. Ng et al. [89] reported the positive
association between neck circumference and the loudness,
annoyance, and roughness of snoring sound. The positive associ-
ation between height and snoring sound is a finding of interest,
and we hypothesize that this association may attribute to the
association between the length of upper airway and snoring
sound. Such association was reported previously by Saha et al.
[83], viz., the length of the upper airway was inversely correlated
with the resonant frequencies of snoring sound (P < 0.05). The
above-mentioned evidence suggests that including participant
characteristics as independent factors may be a good way to
improve the performance of prediction models.

4.4. Methods for recording and identification of the snoring sound

It needs to be noted that, to date, there are no standard
recording and analysis procedures for snoring sound. The applica-
tion of different recording and analysis systems will definitely lead
to difficulties in comparing results between studies. As a first step
of snoring sound-related studies, sufficient attention should be
given to the quality of the snoring sound recording, since it will
undoubtedly influence the corresponding analysis results. Among
all the technical details in the recording of snoring sound, the po-
sition of the microphone may be the most important one. In a
previous study, Herzog et al. [90] found that the microphone po-
sition influenced the frequency components of snoring sound.
Specifically, non-contact microphones had awider frequency range
than contact microphones, which presents a decreased sensitivity
to the frequency components above 1000 Hz. The authors also
suggested that a contact microphone was a useful screening device
(eg, in polygraphy devices), whereas a non-contact microphone
was the better choice for a natural analysis of snoring sounds.
Another study from Azarbarzin et al. [91] reported that the snoring
sounds recorded using a non-contact microphone were not as
characteristic as those recorded over the trachea, and the tracheal
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snoring sounds showed better performance in clustering snoring
sounds into two groups based on their acoustic parameters.

Due to the partially contradictory results, no conclusion can be
drawn about which kind of microphone is more suitable to make
recordings for snoring sound analyses. However, given the desired
comfortableness of the sleeper, a non-contact microphonemay be a
better choice. In addition, snoring sounds recorded by a non-
contact microphone close to snorer can register the snoring
sounds as they are perceived by snorers' bed partners. This may be
helpful in investigating the disturbance caused by the snoring
sounds to snorers' bed partners. Also, for a sound recording with a
contact microphone, one has to take into consideration the sound
conduction effect of subcutaneous tissue, especially in an OSA
population with markedly varying degrees of obesity [92]. Prob-
ably, these are the reasons why the majority of the included studies
performed snoring sound recordings using non-contact micro-
phones. For non-contact microphones, it is important that the
generated snoring sounds go directly to the microphone so that the
microphone can receive as much signals as possible, and that the
reflection of snoring sound by walls and furniture should be
minimized as to obtain the original snoring sound, which means
that the non-contact microphone should be placed in free field
(direct field), where the reflection of sound is negligible [93].
Therefore, the non-contact microphone should point to the
sleeper's mouth and the distance between the non-contact
microphone and patient's mouth should be shorter than that be-
tween the non-contact microphone and the nearest wall or furni-
ture that may lead to the reflection of sound.

After the recording and pre-processing of snoring sound,
another hurdle one may be confronted with is the identification of
snoring events. Normally, researchers set an acoustic criterion by
which the snoring events are identified. Unfortunately, this crite-
rion is highly variable and subjective due to the lack of standardi-
zation and the existence of various recording systems. The variable
and subjective identification procedure leads to a variety in the
field of snoring sound analysis, and to difficulties in comparing the
various studies, which consequently hinders the development of an
evidence-based snoring sound-related study. In previous studies,
the employed acoustic criterion for the identification of snoring
events varied from 36 dB to 76 dB and from 40.5 dBA to 60 dBA
[26,27,94,95] with a large variation of the distance between
microphone and patient's mouth. Leto et al. [26] set a sound in-
tensity of 36 dB as the criterion of detecting snoring sounds. This
level was based on the results of their pilot studies, as well as on the
suggestion from World Health Organization (WHO), viz., indoor
continuous sound pressure level above 30 dB should be avoided
during sleep [96]. Rohrmeier et al. [27] used a sound intensity of
46.6 dBA to differentiate snoring sound from breathing sound, and
obtained an optimum sensitivity and specificity of 76.9% and 78.8%,
respectively. Blumen et al. [95] identified snoring events based on
both the frequency and the intensity of snoring sound; the authors
defined snoring sound as sound of which the frequency band was
within 20e200 Hz, and the sound intensity was higher than 76 dB.
It is undoubtedly better to identify snoring events based on snoring
sound parameters in both intensity and frequency domains than
only based on snoring sound parameters in intensity domain.
However, it seems that a frequency band of 20e200 Hz is too
narrow to include all kinds of snoring sounds, sounds of which the
frequencies can range from less than 200 Hz to higher than 1000 Hz
[46,50].

4.5. Limitations

This review inevitably has some limitations. Firstly, all 28
studies only included snorers whose obstruction site(s) is (are) also
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the excitation/vibration site(s) of snoring sound. However, it is a
clinical reality that lots of snorers, especially snoring OSA patients,
have multilevel obstruction and usually only one obstruction site
generates snoring sounds while the other obstruction site(s) does
(do) not generate snoring sounds. To the best of the authors’
knowledge, no study has been performed on the association be-
tween snoring sound parameters and all obstruction sites (both
generating and not generating snoring sound). It would be clinically
meaningful to investigate the predictive role of snoring sound on
multilevel obstruction and to explore the possibility of predicting
all obstruction sites in the upper airway rather than only the
excitation site. Secondly, given the fact that there is no gold stan-
dard to investigate the upper airway during sleep and to identify
the obstruction site, all studies using DISE, airflow shape, dynamic
MRI, SVF, and upper airway pressure monitoring were included in
this review. This prevents the potential bias caused by the use of a
single reference test but leads to the difficulty in comparing the
results between studies. A positive side of including multiple
reference tests is that the main findings in the present review were
supported by studies using all the above-mentioned modalities,
strengthening the reliability of the findings. Lastly, as mentioned
above, the studies and outcomes were too heterogeneous (different
populations, different snoring sound parameters, different
methods for the identification of the obstruction sites, etc.) to
conduct a meta-analysis for further results comparison.

5. Conclusion

In this systematic review, available evidence points toward as-
sociation between the snoring sound parameters in frequency
domain and the obstruction sites in the upper airway. More studies
are needed to investigate the associations between the obstruction
sites on the one hand and the snoring sound parameters in tem-
poral and intensity domains on the other hand. In addition, it is
promising to build a predictionmodel of the obstruction sites based
on snoring sound parameters and participant characteristics, but so
far snoring sound analysis does not seem to be a viable diagnostic
modality for treatment selection.
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