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Abstract
Three recent randomized control trials (RCTs) found that treatment of obstructive sleep apnea (OSA) with continuous positive airway pressure (CPAP) did not reduce 

rates of future cardiovascular events. This article discusses the biases in these RCTs that may explain their negative results, and how to overcome these biases in 

future studies.

First, sample selection bias affected each RCT. The subjects recruited were not patients typically presenting for treatment of OSA. In particular, subjects with 

excessive sleepiness were excluded due to ethical concerns. As recent data indicate that the excessively sleepy OSA subtype has increased cardiovascular risk, 

subjects most likely to benefit from treatment were excluded. Second, RCTs had low adherence to therapy. Reported adherence is lower than found clinically, 

suggesting it is in part related to selection bias. Each RCT showed a CPAP benefit consistent with epidemiological studies when restricting to adherent patients, but 

was underpowered.

Future studies need to include sleepy individuals and maximize adherence. Since it is unethical and impractical to randomize very sleepy subjects to no therapy, 

alternative designs are required. Observational designs using propensity scores, which are accepted by FDA for studies of medical devices, provide an opportunity. 

The design needs to ensure covariate balance, including measures assessing healthy user and healthy adherer biases, between regular users of CPAP and non-users. 

Sensitivity analyses can evaluate the robustness of results to unmeasured confounding, thereby improving confidence in conclusions. Thus, these designs can 

robustly assess the cardiovascular benefit of CPAP in real-world patients, overcoming biases in RCTs.
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Statement of Significance

Randomized control trials of the effect of continuous positive airway pressure on cardiovascular events have been negative, which is in-
consistent with epidemiological data. Major biases in these trials could explain the negative results. For ethical reasons, recent trials ex-
cluded subjects with excessive sleepiness, the very group at increased risk for cardiovascular events. Moreover, adherence to therapy was 
inadequate. Future studies need to include and focus on sleepy subjects. Ethical limitations to including these patients can be overcome 
with observational designs using propensity scores. To obtain a robust treatment effect, these designs need to directly ensure balance of 
covariates related to cardiovascular events, including measures of healthy user and healthy adherer bias, in patients very compliant to 
CPAP compared to non-users.
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Introduction

Obstructive sleep apnea (OSA) is an extremely common dis-
order [1–3]. It is estimated there are likely 1.0 billion people 
worldwide with undiagnosed OSA [1]. Apneas and hypopneas 
during sleep result in sleep fragmentation and cyclical inter-
mittent hypoxia in every tissue, although the pattern of deoxy-
genation/reoxygenation varies between organs [4]. There is an 
effective and safe therapy—nasal continuous positive airway 
pressure (CPAP) [5]. Both the daily use of CPAP and its efficacy 
can be monitored remotely. Given the high prevalence of OSA, 
there is a need to determine its influence on other chronic dis-
orders. If OSA adversely affects medically important conditions, 
then treating people with OSA becomes crucial for improving 
overall health. This understanding can also aid policymakers 
in determining appropriate reimbursement strategies and 
screening recommendations. Currently, the evidence for routine 
screening for OSA is considered inadequate [6].

The first approaches to understanding the impact of OSA 
in other health conditions included well-conducted epidemio-
logical studies, with control for relevant confounding factors. 
The Sleep Heart Health Study (SHHS) in community-based sam-
ples [7, 8] and the Wisconsin Sleep Cohort Study [9] in state 
employees in Wisconsin provided important results. OSA was 
shown to be an independent risk factor for hypertension [10, 
11], cardiovascular disease [12], coronary disease [13], stroke 
[14, 15], carotid atherosclerosis [16], cardiac arrhythmias [17, 18], 
and mortality [19, 20]. These findings from community samples 
were supported by studies in clinical cohorts. For example, the 
Spanish Sleep Research Network demonstrated a substantial in-
crease of cardiovascular events in patients with severe OSA not 
using CPAP, compared to controls, less severe apneics and severe 
OSA using CPAP [21, 22]. This was not simply related to a “healthy 
adherer” bias, since medication refills for multiple classes of 
medications were the same in CPAP users and non-users [23]. 
Although impactful, these studies likely over-estimated the ef-
fects of OSA. While studies controlled for important covariates, 
other potential confounders, such as level of exercise/activity 
[24], dietary differences, [25], and specific distributions of fat [26], 
were not included.

It has recently been shown that OSA is a heterogeneous dis-
order with respect to physiology [27] and symptoms [28–32]. 
Cluster analysis in the Icelandic Sleep Apnea Cohort (ISAC) iden-
tified three distinct symptom subtypes of OSA [28]: (1) disturbed 
sleep (e.g. complaints of insomnia); (2) relatively asymptomatic; and 
(3) excessively sleepy. These findings have been replicated in sleep 
centers around the world that participate in the Sleep Apnea 
Global Interdisciplinary Consortium (SAGIC) [29], and in the 
community-based Korean Genome Cohort [30] and SHHS [31]. 
Importantly, only the excessively sleepy group shows consistent 
evidence of increased cardiovascular risk [31]. This is a key ob-
servation both for understanding clinical care and interpreting 
results of recent cardiovascular clinical trials, where adults with 
OSA and excessive sleepiness have been excluded mainly due to 
ethical concerns related to increased likelihood of car crashes 
without treatment [33].

Given the results of epidemiological studies, it was natural 
to study the role of OSA using randomized control trials (RCTs). 
There is a view that evidence based on RCTs is essential [34] 
since randomization is expected to result in good covariate 
balance between treated and untreated groups when applied 

to large numbers. Indeed, with the development of sham CPAP 
[35], successful and important RCTs have been conducted in 
OSA for sleepiness [36, 37], quality of life [38], and blood pres-
sure [39], including in resistant hypertension [40]. These studies 
have shown clear benefits of CPAP therapy with respect to rela-
tively short-term endpoints, which has improved clinical care. 
In contrast, recent RCTs assessing the effects of OSA treat-
ment on cardiovascular events have been negative [41–45]. 
This raises the question as to whether OSA is indeed of clin-
ical relevance for cardiovascular disease. Alternatively, could 
there have been methodological issues that impaired the ability 
of RCTs to detect the benefit of OSA therapy for reduction in 
cardiovascular events?

While RCTs are considered the optimal approach, they are 
not without inherent problems. These biases have been de-
scribed in a recent report by Krauss [46], building on previous lit-
erature [47–49]. Consequently, there are proposed and evolving 
standards for reporting of randomized clinical trials—the 
Consolidated Standards of Reporting Trials (CONSORT) [50–53]. 
Although RCTs are the preferred level of evidence in the ideal 
world, alternative methods for estimating causal treatment ef-
fects from real-world data are often required (see below). In OSA, 
this is particularly true given biases in RCTs that result from 
more severe patients being under-represented in longer-term 
studies and the inability to ethically randomize excessively 
sleepy patients to no therapy given the established benefits of 
CPAP and the danger sleepy individuals can present to them-
selves and others.

In this article, we focus on the potential challenges and 
biases in recently conducted RCTs of cardiovascular endpoints 
of OSA [41–45] and describe how these may have led to their 
negative conclusions. We then detail the rationale for, and 
the implementation of, alternative approaches to obtaining 
evidence of causality from carefully designed observational 
studies, some of which have been utilized within the context of 
these same negative RCTs. Given the likely biases in the recent 
RCTs, we argue that we cannot simply conclude that CPAP has 
no benefit in reducing cardiovascular events based on these re-
cent negative results. As Black indicated many years ago, “the 
false conflict between those who advocate randomized trials in 
all situations and those who believe observational data provide 
evidence needs to be replaced with mutual recognition of the 
complimentary roles of these two approaches.” [54].

RCTs on Role of CPAP in Prevention of 
Cardiovascular Events
We first briefly describe the study populations and primary out-
comes of recent randomized trials of cardiovascular endpoints 
in OSA.

The sleep apnea cardiovascular endpoints 
(SAVE) study

The SAVE trial was a secondary prevention study, including 
participants with coronary or cerebrovascular disease and an 
oxygen desaturation index (4%) of ≥12 events/h, based on an 
ApneaLink (ResMed) device, recruited from 89 clinical centers 
in seven countries [41, 42]. Notably, the ApneaLink does not 
include an assessment of respiratory effort or oral airflow and 
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hence can misclassify events. Subjects with marked excessive 
sleepiness (Epworth Sleepiness Scale [ESS] score > 15)  and/
or severe hypoxemia (oxygen saturation <80% for >10% of 
recording time) were excluded. Participants (n  =  2,717) were 
randomized into a CPAP treatment group or usual care with 
no specific therapy for OSA. There was no difference between 
randomized arms with respect to incidence of the primary 
composite endpoint of death from any cardiovascular cause, 
myocardial infarction (including silent), stroke, hospitaliza-
tion for heart failure, acute coronary syndrome (including 
unstable angina), or TIA (hazard ratio and 95% confidence 
interval [CI] with CPAP = 1.10 [0.91, 1.32]; p = 0.34) [41]. Thus, 
the RCT was negative.

The impact of sleep apnea syndrome in the 
evolution of acute coronary syndrome—effect of 
intervention with CPAP (ISAACC) study

The ISAACC study [43, 44] recruited individuals who had just 
been hospitalized for acute coronary syndrome with an apnea–
hypopnea index (AHI) ≥15 events/h, based on a respiratory 
polygraphy performed 24 to 72 h after admission, across 15 hos-
pitals in the Spanish Sleep Network. Subjects were excluded if 
they had an ESS >10, indicating elevated sleepiness. Participants 
with OSA (n  =  1,264) were randomized to CPAP or usual care. 
There was no difference between arms in the incidence of the 
primary composite outcome of first cardiovascular event—car-
diovascular death or non-fatal events (acute myocardial infarc-
tion, non-fatal stroke, hospital admission for heart failure, and 
new hospitalizations for unstable angina or TIA)—with a hazard 
ratio (95% CI) with CPAP of 0.89 (0.68, 1.17) (p = 0.40) [43]. Thus, 
this study was also negative.

The randomized intervention with continuous 
positive airway pressure in CAD and OSA 
(RICCADSA) study

The RICCADSA study [45] was also a secondary prevention trial, 
and included participants with angiography-demonstrated 
coronary disease who had undergone a revascularization pro-
cedure (surgical or percutaneous) and had an AHI ≥15 events/h 
identified by an overnight sleep study at home (cardiorespira-
tory polygraphy) or in-laboratory PSG. Subjects with an ESS ≥10 
were excluded. Participants (n = 244) were randomized to either 
auto-titrating CPAP or no positive airway pressure. There was no 
difference in incidence of the primary outcome—a composite 
of repeat revascularization, new myocardial infarction, stroke or 
death attributed to cardiovascular causes—between those with 
and without CPAP (hazard ratio [95% CI] with CPAP = 0.80 [0.46, 
1.41]; p = 0.45). Thus, the study was also negative with respect to 
the primary endpoint.

Understanding Challenges and Bias in 
RCTs and the Impact on OSA Trials for 
Assessment of Cardiovascular Benefit 
of CPAP
We now consider the key challenges and sources of bias in re-
cent RCTs of cardiovascular endpoints in OSA, and how they 
may have contributed to the observed negative results.

Sample selection bias

Bias that results from the specific characteristics of the study 
sample that was randomized, when compared to the target 
population as a whole, is referred to as sample selection bias. For 
recent cardiovascular trials of OSA, it is important to ask if the 
recruited participants are representative of real-world patients. 
The answer is no. Thus, sample selection bias is a fundamental 
problem with all of these studies. There is a developing interest 
in ensuring that we are studying real-world patients [55].

To illustrate this point, we emphasize that due to ethical 
concerns with randomization, all recent trials excluded subjects 
with excessive sleepiness, based on different thresholds [41–45]. 
This resulted in study samples with levels of sleepiness consid-
erably lower than typically seen in clinical practice. Given recent 
data indicating that adults with OSA exhibiting excessive sleepi-
ness are at greatest cardiovascular risk [31, 56, 57], we believe 
this represents a major source of bias that contributed to the 
observed negative results in each trial.

Beyond excluding excessively sleepy individuals, selection 
bias may result from where and how included participants were 
recruited. While individuals with OSA from the general popula-
tion can be a convenient source of recruitment, they tend to be 
relatively asymptomatic, raising questions as to the clinical sig-
nificance of their disease [9, 58]. Recent randomized trials have 
focused on diagnosing OSA among individuals with established 
cardiovascular disease, as opposed to identifying adults with 
clinically diagnosed OSA. Recruitment in the SAVE study was 
initially based on the George’s Institute Stroke and Cardiology 
network and while it expanded to include sleep centers, many 
of the subjects recruited were not individuals presenting with 
symptoms of OSA. Thus, the sample was not representative of 
typical adults seeking treatment. A key cause of this bias is the 
reality that symptomatic patients are less willing to be random-
ized to a study arm that receives no treatment for an extended 
period of follow-up and/or their providers are less likely to rec-
ommend participation. This point is perhaps most clearly illus-
trated in the Apnea Positive Pressure Long-term Efficacy Study 
(APPLES) [59], where authors noted that due to the required will-
ingness to defer effective treatment for 6 months in the sham 
arm, “a majority of these participants [78%; C. Kushida, personal 
communication] were recruited from advertisements rather 
than clinically referred for OSA.” Given the length of follow-up 
required to observe cardiovascular endpoints, this issue is likely 
even more of a barrier in the recent RCTs.

In addition to bias in recruitment approaches, all trials were 
designed as secondary prevention studies. In fact, the ISAACC 
study identified individuals immediately following an acute cor-
onary event. Although we do not know the impact of acute car-
diovascular disease on sleep-disordered breathing, other studies 
have waited until the patient stabilized before assessing OSA 
severity [60]. While recruiting individuals with pre-existing dis-
ease increases the rate of new cardiovascular events, statistical 
power is not necessarily enhanced unless the treatment effect 
size is as clinically meaningful for secondary prevention as it is 
for primary prevention.

Bias due to low adherence to therapy

For a treatment to be effective, one presumes that individ-
uals assigned to therapy will adequately adhere. For CPAP, a 
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clinically accepted criterion for adequate usage is an average 
of ≥4 h/night. Even at this threshold, additional sleep likely oc-
curs without wearing CPAP, leading to unprotected sleep with 
attendant apneas, hypopneas, and intermittent oxygen desatur-
ation. A lack of adherence will diminish the benefits of therapy, 
leading to negative results. As detailed below and illustrated in 
Figure 1, low adherence to CPAP therapy is another major source 
of bias in each of the recent RCTs of cardiovascular endpoints 
in OSA. This bias is likely related, in part, to the sample selec-
tion bias described above, as people not presenting clinically for 
diagnosis of OSA may be less likely to accept and adhere to treat-
ment. As a clear illustration of the impact of lack of adherence, 
in each of the RCTs more favorable results that are consistent 
with observational studies were found in secondary analyses re-
stricted to adherent individuals.

In the SAVE study [41, 42], despite an initial run-in period that 
achieved an average usage of 5.2 h/night, CPAP usage declined 
over the first year to 3.5 ± 2.4 h/night and was only 3.3 ± 2.3 h/
night at final follow-up. Only 42% of subjects in the CPAP treated 
group achieved acceptable adherence (≥4  h/night). Strong evi-
dence that lack of adherence may have biased results is shown 
through a secondary propensity score matching analysis con-
ducted by the SAVE investigators [41] (this technique is de-
scribed in more detail below). When creating a matched sample 
of 561 adherent participants from the CPAP arm and 561 parti-
cipants receiving usual care, there were fewer CV events among 
the CPAP arm (hazard ratio [95% CI] = 0.80 [0.60, 1.07]; p = 0.13). 
This estimate is consistent with both observational data and 
evidence from the meta-analysis of Yu et al. [61]. However, the 
sample size for this secondary analysis was underpowered for 
significance [62].

Similarly, the adherence to CPAP was extremely low in the 
ISAACC study [43, 44]. At one year after starting CPAP, average 
compliance was only 2.8 ± 2.6 h/night, with only 227 of 629 pa-
tients in the CPAP arm (36%) achieving “good adherence” (≥4 h/
night on average). A propensity score analysis comparing those 

achieving “good adherence” to those with usual care showed a 
hazard ratio of 0.80 (95% CI: 0.52, 1.23; p = 0.32) favoring the CPAP 
arm. Once again, this estimate is similar in magnitude to that 
found in SAVE [41] and in statin trials [63], but was achieved in 
a very limited sample size with a lack of statistical power to de-
tect significance.

Finally, in the RICCADSA study [45], only 76 of 122 partici-
pants who started CPAP (62.3%) were still using therapy at 1 year. 
In those using CPAP, the average adherence was 5.8  ± 1.7  h/
night. Thus, the bias in this study was due to the relatively large 
number of participants who stopped using CPAP (37.7%). Once 
again emphasizing the bias caused by lack of adherence, the in-
cidence of the composite endpoint was 2.31 (95% CI: 0.96, 5.54) 
per 100 person-years in those using CPAP ≥4 h/night on average, 
compared to 5.32 (95% CI: 3.96, 7.15) per 100 person-year in those 
using CPAP <4 h/night. The study observed a significant decreased 
risk of cardiovascular events among those using CPAP ≥4  h/
night compared to <4 h/night or no CPAP (hazard ratio [95% CI]  
of 0.29 [0.10, 0.86]; p = 0.026).

Therefore, the lack of adequate adherence to CPAP was a 
major source of bias in each of the recent RCTs of cardiovas-
cular endpoints. Moreover, it can be argued that the adherence 
found in these RCTs is not representative of that found clinic-
ally in adults with OSA [64]. When adherent participants are 
compared to non-adherent patients, often employing causal 
analysis approaches to account for confounding factors, each 
study showed some evidence suggesting a benefit of CPAP. 
While unmeasured confounding, such as healthy user or 
healthy adherer bias (see below), could explain some of these 
positive benefits, results from these secondary analyses were 
also consistent with epidemiological data. Issues with adher-
ence are likely to be further impacted in longer-term studies, 
emphasizing the need for developing and utilizing programs to 
enhance CPAP adherence [65].

Small sample size and lack of power

Another challenge with recent RCTs is an inadequate sample 
size. In multiple instances, reasonable and consistent effect 
sizes were observed (particularly when accounting for lack of 
adherence), but samples were underpowered to declare statis-
tical significance, resulting in negative conclusions.

Towards this point, Javaheri et al. [66] have recently argued 
that inadequate sample size is a major problem, estimating 
that between 8,000 and 12,000 subjects per arm are required. 
Thus, while the sample size for the SAVE study (n = 2,717) may 
seem large [41], it remains underpowered [66]. The sample size 
for ISAACC was considerably smaller than for the SAVE trial. 
Based on an expected 25% risk reduction in the CPAP arm and 
an assumed 12% to 20% rate of new cardiovascular events in 
the first year among patients with acute coronary syndrome 
[21], 1,264 patients were randomized to CPAP (n = 633) or usual 
care (n = 631). Given the very low CPAP compliance rate, and 
an observed risk reduction of only 20% among compliant 
patients, the study was not powered to detect a difference. 
Finally, the sample size in the RICCADSA study [45] was ex-
tremely small, with a total of 244 patients. This sample size 
estimate was based on available evidence more than 10 years 
prior to the final publication, at which point there had been 
no studies of CPAP in revascularized patients with CAD and 
OSA [45].

Figure 1.  Average CPAP compliance (hours/night) over the first 24 months re-

ported in recent RCTs of cardiovascular endpoints in OSA. Each study shows 

sub-optimal adherence throughout the study. The SAVE study (green line) [41] 

shows a progressive decline in average hours of use per night, while the ISAACC 

study (blue line) [43] shows low adherence even during the early phase of the 

study. In the RICCADSA study, [45] increased CPAP adherence throughout the 

study is driven by the fact that estimates were derived only among those that 

continued using CPAP (dashed red line). When incorporating no usage in those 

reported to have stopped using CPAP (solid red line), estimated adherence levels 

are similar to both the SAVE and ISAACC trials.
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Therefore, while each study provided information on how 
the initial sample sizes were determined, all ultimately suf-
fered from a lack of statistical power. Larger trials are needed 
to robustly determine the benefit of CPAP on cardiovascular 
endpoints. These trials need to be in real-world patients with 
the disorder.

Challenges with composite endpoints

Each of the recent RCTs also utilized a composite endpoint, com-
bining fatal and non-fatal events, including myocardial infarc-
tion, stroke, heart failure, acute coronary syndrome, unstable 
angina, and/or TIA. The use of composite endpoints can improve 
statistical power by increasing the incidence of events when all 
components are impacted by treatment in the same direction, 
or reduce statistical power if treatment affects components dif-
ferently [66]. Thus, although composite endpoints have advan-
tages, there are also challenges to this approach [67]. Typically, 
each component of the composite endpoint is weighted equally. 
However, this may not be optimal since some endpoint are 
more clinically important than others (e.g. sudden cardiovas-
cular death compared to TIA). Relatedly, studies using equally-
weighted composite endpoints may not adequately consider the 
concept of competing risks, such as fatal events prohibiting fu-
ture occurrence of non-fatal events. While only evaluating the 
first incident event is one commonly used approach to address 
competing risks, this may not adequately capture the broader 
impact of therapy on cardiovascular endpoints/risk.

CPAP may also differentially affect certain components of 
the composite score. There is some evidence that OSA may have 
more marked effects on the cerebrovascular system than the 
coronary system. Vibration of the carotid arteries secondary to 
snoring may lead to plaques in the carotid arteries [68]. A loss 
of autoregulation of the cerebrovascular system has also been 
described in patients with OSA and is corrected by CPAP treat-
ment [69]. Consistent with this idea, secondary propensity score 
analyses in the SAVE trial suggested a CPAP benefit specific to 
stroke and a composite of only cerebral events [41]. In contrast, 
the ISAACC trial found no particular benefit of CPAP on stroke 
events within the propensity score-matched sample [43]. Two 
recent meta-analyses including subjects in these trials adherent 
to therapy also suggested a stronger benefit of CPAP for cerebro-
vascular events compared to coronary events [70, 71]. However, 
some caution may be warranted when interpreting these results 
since results from the SAVE trial may dominate the findings due 
to the much larger number of participants compared to other 
recent studies. Notably, the observation of a stronger effect of 
CPAP on stroke and cerebral events in the SAVE study could re-
flect selection bias, as recruitment in China was initially based 
on the George’s Institute Stroke and Cardiology network popula-
tion, enriching the sample for stroke and cerebral events. In fact, 
63.1% of SAVE participants [41] were recruited in China, where 
stroke is the leading cause of death [72]. Supporting this point, 
approximately 5% of the SAVE sample experienced a stroke [41], 
compared to only 1% of the ISAACC sample [43].

Ultimately, the evidence that CPAP has a differential benefit 
on cerebrovascular events compared to coronary events is not 
particularly strong. Thus, the present state of knowledge seems 
to support the continued use of a primary composite endpoint 
to evaluate the cardiovascular benefit of CPAP. However, studies 

need to carefully consider the potential challenges with com-
posite endpoints and develop plans to address these in the 
design stage. In all cases, treatment group differences in the 
components of a composite outcome should be summarized 
to provide a complete clinical interpretation. Ideally, studies 
should be designed to maintain power to perform secondary 
analyses evaluating the possible differential benefit of CPAP 
on cerebrovascular compared to coronary events. Given the 
lower incidence of these component-specific events, this will 
require larger sample sizes than if only focused on the overall 
composite. In addition, more careful consideration and charac-
terization of the underlying physiological response to CPAP, be-
yond the AHI, may help to understand the specific mechanisms 
through which treatment affects these endpoints. In this regard, 
studies should quantify novel variables that can be extracted 
from the overnight sleep study [73]. The overall hypoxic burden 
may be particularly important since it has been associated with 
cardiovascular mortality [74].

How Do We Include Excessively Sleepy 
Patients in Clinical Trials of Cardiovascular 
disease?
Selection bias introduced by exclusion of excessively sleepy 
individuals in each of these RCTs [41, 43, 45] of cardiovascular 
endpoints deserves special consideration. Recent literature sug-
gests this is the very group likely to benefit the most from CPAP 
in terms of reduction of future cardiovascular events [31]. If 
true, excluding people who are excessively sleepy clearly limits 
a trial’s ability to observe a positive effect. Earlier randomized 
trials including sleepy patients demonstrated benefits of CPAP 
for short-term outcomes such as sleepiness [75, 76], quality of 
life [38, 77], and blood pressure [39]. This has led some to argue 
that there is no value in studying excessively sleepy patients – 
they will be treated regardless of the cardiovascular benefits. 
This, in our view, misses the point. Establishing a benefit of 
CPAP for reducing risk of cardiovascular events, which is best 
accomplished by including sleepy individuals, is likely to help 
reverse recent claims of insufficient evidence to support routine 
screening for OSA [6].

There are a number of possible ways to include exces-
sively sleepy individuals in trials of cardiovascular endpoints, 
outlined below.

	1.	 Standard RCT including excessively sleepy individuals.
		  Since the benefit of CPAP with respect to cardiovascular 

outcomes is uncertain, one may argue that it is ethical 
to randomize even excessively sleepy patients into CPAP 
treatment or usual care [78]. As evidenced by the exclu-
sion of these individuals in recent trials, it seems clear 
this is not a viable strategy [41–45]. This approach will be 
challenging for IRBs to approve since excessively sleepy 
patients are presumed to have an increased risk of ve-
hicular crashes if untreated [33], posing a risk not only 
to themselves, but also to others on the road. Moreover, 
given the known benefits of CPAP for improving sleepi-
ness, potential participants and/or their providers will 
have concerns about being randomized, creating una-
voidable selection bias [59]. Given the high prevalence of 
OSA and cardiovascular disease, some may also consider 
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a traditional RCT with an extremely large sample (e.g. 
50,000 patients) and very short follow-up period (e.g. 
<3 months) as a feasible way to maintain statistical power 
for detecting cardiovascular events without ethnical lim-
itations. However, this approach is unlikely to avoid the 
selection bias caused by symptomatic participants being 
less willing to participate, as noted in the APPLES study 
[59], and only addresses the very short-term cardiovas-
cular benefits of CPAP.

	2.	 Randomizing to multiple treatment arms.
		  A second approach might be to conduct a randomized trial 

comparing usual CPAP care with an arm that is designed to 
enhance and sustain CPAP adherence. Since both arms in-
clude active treatment, there are no longer ethical concerns 
about randomizing people who are excessively sleepy. As 
opposed to comparing CPAP users to non-users, the primary 
analysis would evaluate whether the arm with enhanced 
adherence shows improved outcomes compared to those 
with usual adherence. While this approach overcomes 
the ethical concerns, there are practical concerns for con-
ducting such a study. Since the primary analysis compares 
two active treatment groups, risk differences between the 
arms are expected to be considerably smaller than when 
comparing treated and untreated subjects. Thus, these 
studies will likely require very large sample sizes to main-
tain statistical power.

	3.	 Pharmacologically treating sleepiness in an RCT.
		  A  third approach, recently advocated by Javaheri et  al. 

[66] is to randomize all patients to active CPAP or control, 
but simultaneously prescribe FDA-approved therapeutics 
that promote wakefulness (e.g. modafinil, solriamfetol, 
or pitolisant) to excessively sleepy patients in both arms. 
Ultimately, this is not reflective of typical clinical practice, 
resulting in concerns about generalizability. Moreover, this 
type of blanket pharmacological treatment may lead to ad-
ditional concerns, and it is unknown whether drugs will 
result in other effects that confound interpretation of the 
benefits of CPAP in their absence. Thus, the validity of this 
approach remains unclear.

	4.	 Apply techniques for estimating causal treatment effects in 
observational data.

		  A fourth strategy is to utilize analysis techniques designed 
to reduce bias in estimated treatment effects from observa-
tional real-world data, such as methods relying on propen-
sity scores [79, 80]. This approach is particularly applicable 
when it is unethical to randomize individuals into no treat-
ment [81], as is the case with excessively sleepy people 
with OSA. While this approach has had limited application 
in studies of OSA [82], it has become more widely used in 
a number of other diseases, including in cardiovascular 
disease [81], as well as in determining the efficacy of de-
vices [83]. Supporting the validity of this approach, the FDA 
Center for Devices and Radiological Health (CDRH) has in-
dicated that propensity score methods are appropriate to 
support approval of medical devices, which would include 
CPAP, for studies using non-randomized controls as long as 
subject-level data are available for both covariates and out-
comes [84]. Given that data on CPAP use can be obtained re-
motely, we are in an ideal position to apply these propensity 
score designs to compare outcomes in individuals who are 
adherent to CPAP to those who do not use the therapy.

Overcoming Bias in RCTs Using Real-World 
Observational Data
Propensity score matching of real-world observational data 
to estimate causal treatment effects represents a promising 
method for overcoming the described biases in recent RCTs of 
cardiovascular endpoints in OSA. In fact, several of these RCTs 
used these same techniques in secondary analyses comparing 
adherent and non-adherent (or control) participants and dem-
onstrated suggestive benefits of CPAP. We propose that studies 
should take this approach for their primary analyses. We now 
discuss this approach and address concerns about its use.

What is a propensity score?

A propensity score (PS) is the probability that an individual 
who received the study intervention compared to control as 
a function of relevant baseline covariates. “Relevant baseline 
covariates” include all potentially confounding factors. Given 
two individuals with the same propensity score value, one re-
ceiving the study intervention and one the control intervention, 
“then we could imagine that these two subjects were ‘randomly’ 
assigned to each group in the sense of being equally likely to 
be treated or control” [85]. Under the assumption of no unob-
served confounding (more on this below), treatment group com-
parisons may proceed as if participants have been randomized. 
Thus, “The propensity score is the observational study analog 
of complete randomization in randomized experiments in the 
sense that its use is not intended to increase precision but only 
to eliminate systematic biases in treatment-control compari-
sons” [86]. Notably, Braitman and Rosenbaum [87] suggest that 
propensity score methods are particularly well-suited when 
the outcome event is rare, but the treatment is more common; 
there are a large number of individuals in each treatment group, 
and there are many observed covariates. This is because the PS 
modeling focuses on the prediction of treatment rather than on 
the prediction of the rare outcome. This is likely the case for 
CPAP trials evaluating cardiovascular endpoints.

Overarching concepts in PS design application

The goal of a PS design is to create a group of treated and un-
treated participants, balanced with respect to baseline covariates, 
in which to assess differences in outcomes due to an interven-
tion. The theoretical underpinnings of PS designs are derived 
from the potential outcome perspective, sometimes referred to as 
Rubin’s Causal Model (RCM) [88]. For valid causal interpretations, 
it is necessary for the non-randomized groups to share the same 
range of propensity scores; subjects in one group who have pro-
pensity scores appreciably larger or smaller than any subject in 
the other group may be excluded from the chosen PS design (i.e. 
“trimmed”). While subjects from both arms may be trimmed, it 
is important to note that excluding subjects receiving the study 
treatment has negative implications for some causal estimates, 
and regulators (e.g. FDA) typically prefer no trimming in the inter-
vention group to avoid issues with regulatory labeling.

In addition to the requirement of propensity score overlap, 
another fundamental principle is the separation of the PS design 
phase from the analysis of outcomes [86, 89]. This separation 
avoids the type of analysis bias that occurs with typical covariate 
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adjustment. Best practices indicate that outcome data should be 
sequestered from the analyst who is determining the PS design. 
Unblinding of outcomes occurs only after all stakeholders reach 
a consensus regarding the suitability of the PS design.

In practice, to implement these approaches a first design 
stage similar to that of an RCT is conducted, including careful 
specification of hypotheses and power analyses, with an add-
itional focus on identifying the rich set of baseline covariates 
associated with outcomes (e.g. composite cardiovascular 
endpoint) that are potentially distributed differently between 
the two treatment groups (e.g. those with and without adequate 
CPAP adherence). For propensity score studies that include pro-
spective recruitment, increasing the planned sample size at 
least among controls (e.g. by 20%) should be considered to main-
tain power in the context of trimming. When enough time has 
elapsed to evaluate CPAP adherence in all enrolled subjects, a 
second design stage implementing the chosen PS methodology 
is completed. As noted above, the analyst implementing the PS 
design should remain blinded to any outcomes until the design 
is determined to be acceptable by stakeholders. When outcome 
data are finally unblinded, valid treatment group comparisons 
that account for the PS design may then be performed.

Covariate selection process

An often-cited limitation of propensity score approaches is that, 
unlike randomization, bias reduction can only be based on ob-
served variables. However, bias from unobserved covariates 
can be removed to the extent that the unobserved covariates 
are correlated with the set of included PS covariates [90]. This 
underscores the need to include a rich set of clinically rele-
vant covariates that are likely to be associated with any unob-
served covariates. Importantly, when choosing covariates it has 
been shown that one should focus on those variables that are 
likely to be associated with the outcome. In fact, the inclusion 
of covariates only associated with likelihood of treatment (and 
not outcome) can reduce statistical precision [91]. A distinct ad-
vantage of the propensity score approach is that it allows simul-
taneous statistical control for a potentially much larger number 
of variables that could be supported in stratified analyses or a 
multiple variable regression model that contains individual fac-
tors. Ultimately, obtaining input from clinical experts and stake-
holders regarding the most essential covariates to measure and 
include in a PS model is a crucial endeavor for assuring a robust 
estimate of the treatment effect.

Specific types of propensity score designs

There are four types of PS designs: (1) subclassification, (2) 
matching, (3) weighting, and (4) covariate adjustment [92]. 
Covariate adjustment using the PS involves the outcome vari-
able and so violates the fundamental principle of separating 
the PS design from the outcomes analysis; thus, it is not further 
mentioned here. Subclassification, matching, and weighting 
are PS design approaches often capable of achieving at least as 
much covariate balance as an RCT, leading to effective bias re-
duction that improves estimates of causal effects.

In PS subclassification, subjects in both groups are parti-
tioned into subclasses (e.g. quintiles) such that the PS values 
are relatively homogenous within the subclass. While fewer or 
more subclasses could be considered, five has been found to 

remove over 90% of the confounding due to a continuous vari-
able [93]. Treatment effects are estimated within each subclass 
and then statistically pooled to determine the overall treatment 
effect. There are many ways to construct a PS model for use in 
PS subclassification [94]. Often, logistic regression is utilized. 
Regardless of the modeling approach, it is imperative to evaluate 
imbalance not only in main effects, but also in squared terms 
and interactions among covariates. Important higher-ordered 
terms should be included in the PS model for the design to result 
in good balance across the set of covariates. An alternative to lo-
gistic regression capable of incorporating covariate interactions 
is Classification and Regression Trees (CART) [95] or other ma-
chine learning approaches [96]. One method for implementing 
PS subclassification is to utilize a sequential heuristic with 
multiple steps that can be repeated as needed to estimate pro-
pensity scores, identify important higher-ordered terms, trim 
subjects with insufficient propensity score overlap, and, ultim-
ately, achieve a valid PS design [97].

There are also many matching designs capable of reducing 
bias and preserving the ability to estimate meaningful causal 
estimands [98]. Matching on the propensity score or other met-
rics (e.g. Mahalanobis distance) is an effective approach—par-
ticularly when there is a surplus of controls. Matching within 
“caliper” guarantees that all matched pairs are “close enough,” 
but may not allow all study treatment subjects to be matched. 
If 1:1 matching is employed, analysis methods appropriate for 
matched pairs may be used. Other methods allow multiple 
matches, which may be beneficial to avoid limitations in ex-
ternal validity when excluding treated patients.

The third approach is weighting individual observations ac-
cording to a specific function of the propensity score, which 
produces specific causal effect estimates consistent with the 
potential outcomes approach [98]. To estimate the average 
treatment effect on the treated (ATT), weights are equal to 1 for 
treated subjects and equal to the odds of study treatment ex-
posure (PS divided by 1 minus the PS) among control subjects 
[99, 100]. When applied to the difference in the proportion with 
a cardiovascular event, this is the causal estimate of the change 
in the event rate had an adherent CPAP user been a non-user 
instead. An alternative weighting scheme, known as the inverse 
probability of treatment weighting (IPTW) produces the average 
treatment effect (ATE). IPTW uses weights of 1/PS for treated and 
1/(1 – PS) for controls. Of note, results from PS subclassification 
can also be used to determine the ATT estimate by weighting the 
subclass-specific treatment differences according to the number 
of study treatment subjects in each subclass. The ATE estimate 
can also be determined by weighting the subclass-specific treat-
ment differences according to the total sample size per sub-
class. As in other designs, estimates derived using weighting 
should be restricted to a sample with similar PS overlap to avoid 
extrapolation.

Determining the success of the PS design

Ultimately, the success of the PS modeling in achieving covariate 
balance must be confirmed before unblinding to have confi-
dence in adequate bias reduction. This is most readily accom-
plished through comparisons of standardized mean differences 
between treatment groups (on both the original and absolute 
scales) before and after accounting for the PS design [101]. 
Guidelines provided by Cohen [102] can be used to interpret the 
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magnitude of these differences as small (0.2), moderate (0.5), or 
large (0.8). However, values as small as 0.10 may reflect a mean-
ingful imbalance. For normally distributed covariates, a stand-
ardized mean difference of 0.10 implies a 7.7% non-overlap in 
distributions [101]. The allowable difference likely depends 
on the importance of the covariate. A  simple and compelling 
visual comparison of successful bias reduction is summarized 
in a “Love Plot,” as originally described by Ahmed et  al. [103]. 
This plot summarizes standardized mean differences with and 
without incorporating the PS design. Graphical illustrations of 
the propensity score overlap are also helpful in demonstrating 
that the treatment groups have sufficient covariate overlap for 
sensible causal estimates. Often, the logit, or log odds of the PS, 
is used for these purposes. Notably, there may be cases in which 
the chosen PS approach is unable to achieve an adequate design. 
As such, the “propensity score technique allows the straight-
forward assessment of whether the treatment groups overlap 
enough regarding baseline covariates to allow for a sensible 
treatment comparison” [83].

Some common critiques of PS designs in 
observational data

Superiority of randomization
While randomization is thought of as superior to observa-
tional designs, the examples of recent RCTs of cardiovascular 
endpoints in OSA have shown there is often substantial bias in 
RCTs. Although a perfectly conducted RCT may provide an un-
biased estimate of the treatment effect, this estimate is not all 
that useful when derived in the wrong target population. Studies 
need to be done in real-world patients [55]. Moreover, while RCTs 
create balance in expectation, when applied in small numbers 
there are often residual differences in baseline covariates. By 
studying real-world patients, including the excessively sleepy, 
and purposefully designing a sample with balanced covariates, 
propensity score designs are meant to directly mitigate selec-
tion bias inherent in these randomized trials. As such, in many 
cases, PS designs can provide more useful and less biased esti-
mates than RCTs.

Healthy user and healthy adherer bias
Another common concern of propensity score designs in 
which patients select their treatment status is the potential for 
“healthy user” and “healthy adherer” bias [104]. Both of these 
biases reflect the idea that individuals who choose to use or ad-
here to a target therapy of interest (e.g. CPAP) are likely to use 
other preventative services (e.g. influenza vaccine) or be more 
adherent to other interventions (e.g. medications or exercise) 
[105]. Thus, benefits attributed to the target therapy may be 
caused by these underlying healthy behaviors. For example, pre-
vious cardiovascular trials have shown that individuals in the 
placebo arm who used the placebo had better outcomes than 
those who did not [106]. While this is a valid concern, estab-
lished covariates capturing these effects can be directly meas-
ured and included in the set of covariates used in the PS design. 
There are validated instruments to assess diet [107] and exercise 
levels [108–110]. There are known lifestyle and socioeconomic 
factors that contribute to healthy user bias [111]. Information 
on preventative services (screening and vaccinations) and pre-
scribed medications are increasingly available through elec-
tronic health records; these data have recently been combined 

to develop a “healthy user index” [112]. Healthy adherer bias can 
be assessed by examining prescription refills, as has been done 
in studies of OSA [23], as well as compliance with follow-up for 
clinical visits. In general, credible PS designs should include all 
identifiable factors that are associated with outcomes of interest 
and that may differ between treated and not treated subjects. 
Enumerating causes of potential selection bias, such as healthy 
user and healthy adherer bias, should be viewed as an essential 
step in the initial design phase of any PS design. As described 
below, sensitivity analyses quantifying the potential impact of 
unmeasured confounders can also help to mitigate these con-
cerns if relevant covariates are unavailable.

Unmeasured or hidden confounding
The validity of causal estimates from a PS design relies on the 
assumption of no unobserved confounders. The credibility of 
this assumption is enhanced if the covariate list is comprehen-
sive and multidimensional since this makes it more likely that 
any unobserved covariates are at least partially associated with 
and indirectly adjusted for by the set of observed covariates. 
Sensitivity analyses can also be performed to determine the 
magnitude of associations between a theoretical unobserved 
covariate and both the exposures and outcomes of interest that 
would be required to nullify the observed treatment effects [113–
116]. If these magnitudes are very large, then the results from 
the observational study are robust with regard to unobserved 
covariates. In contrast, if only small associations could reverse 
the findings, then results from PS designs are not robust. In par-
ticular, VanderWeele and Ding [116] have recently introduced 
the concept of the “E-value,” which can be used to perform sen-
sitivity analyses of hidden bias with minimal assumptions. “The 
E-value is defined as the minimum strength of association, on 
the risk ratio scale, that an unmeasured confounder would need 
to have with both the treatment and the outcome to fully explain 
away a specific treatment–outcome association, conditional on 
the measured covariates” [116]. Routine reporting of such sensi-
tivity analyses promises to increase the scientific credibility of 
the results from this approach to observational studies.

Conclusion
Recently published RCTs on the effect of CPAP on cardiovascular 
outcomes in patients with OSA have major challenges and biases, 
which likely explains the negative results. Thus, we assert that it is 
premature to conclude that CPAP treatment does not reduce car-
diovascular events. A particular challenge is the need to include 
real-world patients [55] with OSA who are excessively sleepy. If one 
accepts that it is unethical to randomize these individuals into no 
treatment for a long period of time, as we do here, alternative ap-
proaches to randomization are required. Even if considered ethical 
[78], there is the practical barrier that symptomatic patients and/
or their providers will decline participation in trials where patients 
will be untreated for a long period of time [59]. This is the very 
situation where strategies to reduce bias and derive causal esti-
mates from observational data are of value. Thus, we propose that 
propensity score designs are the optimal approach to address the 
impact of CPAP on cardiovascular events. We appreciate that this 
assertion will be controversial and will require a willingness of in-
vestigators to consider new strategies. Other fields have realized 
the importance of this type of approach. Hopefully, this commen-
tary will stimulate constructive discussion.
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