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Abstract
Study Objectives:  A critical barrier to successful treatment of circadian misalignment in shift workers is determining circadian 
phase in a clinical or field setting. Light and movement data collected passively from wrist actigraphy can generate predictions of 
circadian phase via mathematical models; however, these models have largely been tested in non-shift working adults. This study 
tested the feasibility and accuracy of actigraphy in predicting dim light melatonin onset (DLMO) in fixed night shift workers.

Methods:  A sample of 45 night shift workers wore wrist actigraphs before completing DLMO in the laboratory (17.0 days ± 10.3 SD). 
DLMO was assessed via 24 hourly saliva samples in dim light (<10 lux). Data from actigraphy were provided as input to a mathematical 
model to generate predictions of circadian phase. Agreement was assessed and compared to average sleep timing on non-workdays as 
a proxy of DLMO. Model code and an open-source prototype assessment tool are available (www.predictDLMO.com).

Results:  Model predictions of DLMO showed good concordance with in-lab DLMO, with Lin’s concordance coefficient of 0.70, which 
was twice as high as agreement using average sleep timing as a proxy of DLMO. The absolute mean error of the predictions was 
2.88 h, with 76% and 91% of the predictions falling with 2 and 4 h, respectively.

Conclusion:  This study is the first to demonstrate the use of wrist actigraphy-based estimates of circadian phase as a clinically 
useful and valid alternative to in-lab measurement of DLMO in fixed night shift workers. Future research should explore how 
additional predictors may impact accuracy.
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Statement of Significance

This study takes important steps in translating a mathematical model of the circadian clock for use as a clinical assessment for 
circadian medicine. Results indicate that data collected via wrist actigraphy can be used to generate estimates of circadian phase 
that show good concordance with gold standard dim light melatonin onset in fixed night shift workers with extreme circadian dis-
ruption. Because actigraphy is already a recommended practice for the assessment of sleep–wake disturbances in shift work, imple-
mentation of this tool would require minimal change to existing practices. Future directions for model improvement are discussed.
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Introduction

As a contemporary society, we have leveraged technological 
innovations to surpass prior limitations of the natural light–
dark cycle. Electrical lighting has allowed us to extend work 
far into the night, thus enabling the provision of around-the-
clock services including medical care (e.g. nurses), safety and 
security (e.g. police), and swift delivery of consumer goods (e.g. 
truck drivers). However, night shift work exposes employees to 
circadian misalignment, which significantly increases risk for 
adverse health and safety outcomes including shift work dis-
order [1, 2], vehicular accidents [3], cancer [4], obesity [5], and 
cardiovascular morbidity and mortality [6, 7] ((for reviews, see 
[8, 9]). Moreover, night shift workers have very limited access to 
interventions that mitigate these risks.

One critical barrier to implementing interventions targeting 
circadian realignment (e.g. timed bright light exposure) is the 
lack of clinically feasible approaches that determine circa-
dian phase in a given night worker. Without clinically feasible 
measures of circadian phase, health-care providers are unable 
to ascertain the necessary parameters to administer interven-
tions with appropriate precision (e.g. the degree/severity of mis-
alignment, appropriate timing, duration, and intensity of light 
therapy), or even to assess if such interventions are appropriate 
for a given patient. Standard laboratory measures of circadian 
phase (e.g. dim light melatonin onset [DLMO]) are time and re-
source intensive, even when adapted for home collection [10]. 
In particular, DLMO assessment in shift workers is especially 
difficult because it requires measurement over 24-h (i.e. three 
to four times longer than in non-shift workers) to ensure an ad-
equate window to capture the full range of DLMO possible [11, 
12]. As such, there has been significant interest in the develop-
ment of alternatives to DLMO [13–16]. Many of the alternatives 
under development extract biomarkers of circadian phase from 
biological specimens. These procedures are often more invasive 
than DLMO (e.g. repeated blood samples and tissue biopsies), are 
currently cost-prohibitive, and carry additional limitations par-
ticularly with respect to obtaining circadian phase in night shift 
workers.

One promising approach to measuring circadian misalign-
ment in the clinic or field is a novel method of processing data 
collected via wrist-worn actigraphs. There are important advan-
tages to this approach. First, it leverages actigraphs as an existing 
technology that is familiar, readily available, and increasingly 
utilized in sleep disorders centers around the world. Critically, 
actigraphic measurement of sleep–wake activity (commonly 
supplemented with light data) is already indicated in the diag-
nostic criteria for Shift Work Disorder (see diagnostic criteria C) 
in the International Classification of Sleep Disorders—3rd edi-
tion [17]. Thus, the use of actigraphy would require minimal 
changes to recommended practice and would enhance the value 
of standard assessments already in-place. Wrist actigraphy is 
also a relatively passive and noninvasive method of data col-
lection, which increases real-world feasibility and allows for 
tracking over long periods of time. Finally, sleep tracking using 
consumer wearables is already commonplace, further empha-
sizing the potential feasibility and scalability of this approach.

Estimating circadian phase with actigraphy and photometry 
(i.e. with light sensors) in this manner leverages laboratory-
validated mathematical models of how the human circadian 
clock responds to light. Recent research has begun testing the 
validity of these models outside the laboratory. For example, 

Woelders et  al. [18] demonstrated that light and activity data 
from Actiwatches were able to predict DLMO with strong ac-
curacy (R2 = 0.71, standard deviation in the predictions = 1.1 h) 
in healthy day workers with varied self-reported chronotype. 
Another study examined regular and irregular undergraduate 
sleepers, and found that 81% of the predicted DLMO using light 
activity from Actiwatches fell within ± 2  h of observed DLMO 
[19]. Finally, Stone et  al. [20] followed 25 health-care workers 
wearing Actiwatches through a 3–5 day transition from the day 
shift to the night shift, with pre- and post-transition measure-
ments of urinary 6-sulphatoxymelatonin (aMT6s) in the field. 
Results showed that 92% of model-predicted phase fell within 
± 2 h (average error of 0.95 h) of the cosinor acrophase fitted to 
aMT6s values.

Importantly, these foundational studies have demonstrated 
that wrist actigraphy with photometry can estimate circadian 
phase; however, clinical translation for the most relevant popu-
lations require validation in samples with significantly greater 
irregularities in sleep–wake schedules and light exposure (e.g. 
significant circadian disruption due to routine displacement 
sleep into the daytime). Indeed, individuals in extant studies 
predominantly followed a diurnal sleep–wake schedule, re-
sulting in a narrower range of circadian phase than fixed night 
shift workers. For example, though Stone et al. [20] included ro-
tating shift workers, the bedtimes at baseline (i.e. before rotating 
onto the night shift) all occurred nocturnally, clustering around 
a 2-h window (10:14 pm to 12:26 am). Melatonin acrophase at 
baseline also occurred within a 4 h range, which is comparable 
to the range of DLMOs found in healthy individuals not engaged 
in shift work [21]. This is likely because night shifts were limited 
to one week per month, thus allowing a diurnal sleep–wake 
schedule 75% of the time. While the range of bedtimes and cir-
cadian phases was wider in the sample of irregular sleepers in 
Phillips et al. [19] (DLMO ranged approximately from 6:00 pm to 
3:00 am), even the most irregular sleeper in that sample—albeit 
likely a late chronotype—slept predominantly at night (i.e. ~90% 
of sleep periods initiated between 12:00 am and 5:00 am).

One consequence of testing in samples with largely diurnal 
sleep–wake schedules is a restricted range in observed DLMOs, 
which may restrict the range of errors in the model predictions. 
For example, prediction errors within 1 or 2  h may be readily 
achieved if the range of DLMOs only clustered within 4  h. 
Moreover, healthy individuals with diurnal sleep–wake sched-
ules are more likely to be entrained and regular, in which case 
a reasonable prediction of DLMO can be achieved with sleep 
diaries and does not require actigraphy and/or photometry. For 
example, Crowley et  al. [22] found that information collected 
via sleep diary in 208 adolescents accurately predicted DLMO 
within ± 1 h for 80% of the sample. In order to validate the use 
of actigraphy and photometry to predict circadian phase in shift 
workers, individuals with extreme circadian disruption due 
to irregular light exposure and sleep–wake schedules must be 
studied. In fact, quantifying the error in such conditions is key 
to translating circadian models for use in real-world clinical set-
tings. Without this initial translational science, the feasibility, 
accuracy, and clinical utility of such an approach will remain 
unknown.

In this study, we tested the viability of wrist actigraphy and 
photometry to estimate circadian phase (i.e. DLMO) in a sample 
of fixed night shift workers. Because night shift workers often re-
turn to nighttime sleep on their days off, these individuals are 
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exposed to highly irregular light schedules and experience some 
of the most extreme circadian disruption in the working popu-
lation. Furthermore, validation under these conditions will also 
test the limits of this method and assess its ability to provide 
clinical information needed for therapeutic interventions in in-
dividuals with severe circadian disruption. Finally, to assess the 
unique contribution of this approach, we also compared how the 
model predictions performed against objective sleep timing on 
non-workdays as a currently accessible proxy of DLMO.

Methods

Participants

Participants were recruited as part of a larger study examining 
the clinical impact of circadian misalignment in night shift 
workers. Recruitment was conducted primarily through flyers 
distributed in the community and as part of a health system-
wide newsletter, which sampled across six major hospitals 
serving the greater Detroit metropolitan area. A  total of 125 
prospective participants completed an initial internet-based 
prescreening survey, and 47 eligible participants were invited for 
an in-person interview with a clinician with expertise in sleep 
medicine. The clinical assessment focused on sleep and mental 
health, including details about shift work and sleep–wake 
schedules, symptoms of insomnia and excessive sleepiness, 
and psychiatric disorders evaluated via the Structured Clinical 
Interview for DSM Disorders (SCID). Presence of sleep and cir-
cadian rhythm disorders beyond shift work disorder (e.g. ob-
structive sleep apnea, restless leg syndrome, and periodic limb 
movement disorder) were determined via both clinical interview 
and an 8-h polysomnography (PSG) at the sleep center.

Study inclusion required working a fixed night shift work 
schedule, which was operationalized as starting between 6:00 
pm and 3:00 am, with shifts lasting between 6 and 12 h. Inclusion 
of 6:00 pm in the start time was targeted for individuals working 
12-h shifts (e.g. 6:00 pm to 6:00 am). Schedules that were better 
characterized as the afternoon/evening shift (i.e. second shift) 
were excluded. Additionally, work shifts had to occur at least 
3 nights per week for a minimum work duration of 1  year. 
Participants had to report a habitual time in bed between 6 and 
9 h to preclude inadequate sleep opportunity as a confounding 
variable. Participants with a medical history of central nervous 
system disorders, sleep disorders, or an unstable major medical 
condition were excluded via either clinical interview, medical 
chart review, or PSG. Use of substances that may interfere with 
any outcome measures in the larger study (e.g. sleep, sleepiness, 
and circadian phase) also resulted in study exclusion; these in-
cluded dependence on alcohol (≥ 4 beverages per day), heavy 
tobacco use (≥ 10 cigarettes per day), recreational drug use, 
medications impacting central nervous system functioning, and 
caffeine use in excess of 5–6 servings (~600 mg) per day.

A final sample of 45 individuals was included for analysis 
in this study following exclusion of one individual due to 
noncompliance with instructions for actigraphy collection and 
one individual due to the presence of obstructive sleep apnea 
diagnosed by PSG. The final sample comprised 82% females 
(n = 37) with an average age of 39.2 ± 10.3 SD (range = 21–64). 
All procedures were approved by the Institutional Review Board, 
and all participants provided informed consent prior to study 
participation.

Procedures

Following enrollment, participants were scheduled for a lab 
visit, and provided with an Actiwatch (Philips Respironics, USA) 
approximately 2 weeks before the lab visit. Participants were in-
structed to wear the Actiwatch at all times with the exception 
of circumstances involving immersion in water (showers, baths, 
swimming, etc.), and to avoid covering up the watch with long 
sleeves or jackets. Written instructions were also provided with 
the watch, and a reminder to begin wearing the watch was pro-
vided 2 weeks prior to their scheduled visit. Participants who re-
scheduled within two weeks of their laboratory visit were asked 
to continue wearing the watch until their rescheduled visit. 
Participants arrived at the lab in the morning following a night 
shift and were provided an 8  h in-lab PSG. Upon awakening, 
participants remained in the lab for 24 h under dim light (<10 
lux), with hourly saliva samples assayed for melatonin (see 
Determining DLMO section).

Determining DLMO
 The daily rhythm of melatonin secretion is a reliable marker 
for circadian phase [23], and was assessed via DLMO based on 
hourly salivary samples for a total period of 24 consecutive hours. 
Samples were collected in a private and sound-attenuated room 
under constant dim light (<10 lux). During saliva collection, all 
participants were asked to remain seated in a comfortable chair 
until an adequate collection of saliva was verified. No food or 
drinks were allowed 10  min prior to saliva sample collection, 
and food items that may interfere with melatonin assays were 
precluded from participants. Between hourly samples, subjects 
were allowed to partake in approved activities, such as reading 
or listening to music. The use of electronics was permitted if 
backlit screens were maintained at <10 lux (based on angle of 
gaze). DLMO was determined using a relative threshold based on 
2 standard deviations above the mean of three samples during 
the biological day (samples were consecutive and the set with 
the lowest consecutive sum was selected). Linear interpolation 
was used to estimate the time at which melatonin concentra-
tion surpassed the threshold.

Saliva samples were collected using a Salivette tube 
(Sarstedt AG & Co., Nümbrecht, Germany) with a cotton insert. 
Participants were instructed to place the cotton insert in their 
mouth by the salivary glands underneath the tongue to sat-
urate the cotton insert with saliva. Samples were submitted 
to SolidPhase, Inc. (Portland, OR) where melatonin levels were 
determined via a radioimmunoassay.

DLMO prediction
DLMO estimation was conducted using a mathematical model 
of the impact of light on the human circadian pacemaker. The 
model was originally created by Kronauer et al. [24], and has 
since been adapted and refined [25–27]. We compared the per-
formance of existing models across multiple populations and 
selected the model with the best accuracy for analysis in this 
study (i.e. the higher-order model with the non-photic compo-
nent) [28]. It is important to note that these models were de-
veloped based on empirical data using core body temperature 
minimum (CBTmin), and thus are designed to output predictions 
of CBTmin. DLMO predictions were extracted by subtracting 7 h 
from the model output in order to estimate DLMO from CBTmin 
[29, 30].
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Input choice
Until recently, most models of circadian rhythms have solely 
used light data as input into the mathematical model. As 
others have argued [31], light measurement from wrist-worn 
devices may not accurately reflect the input of light into the 
central circadian pacemaker (i.e. the suprachiasmatic nucleus) 
via the retina. Additionally, light data collected from wrist 
actigraphs can easily be covered by apparel (e.g. long sleeves), 
and have variable sensitivity across the full range of visible 
light intensity. In contrast, activity data measured via tri-axial 
accelerometry are not prone to these disturbances. As such, 
some approaches have begun to supplement model predic-
tions with activity data. The most recent approaches include 
producing initial model predictions using only light data, and 
then adjusting predictions with an additional statistical model 
covarying for phase markers of activity (e.g. activity acrophase) 
[18].

Critically, our recent work has demonstrated that activity 
data from wrist actigraphy can be used in existing models to 
produce robust estimates of circadian phase that may even out-
perform predictions using light data alone (see Supplementary 
Table S1). As light is known to be the strongest zeitgeber, this 
finding likely reflects the aforementioned limitations of using 
light from the wrist as a proxy for light to the circadian system 
via the retina. Secondly, activity may also serve as nonphotic 
entrainment (for a more in-depth discussion, see [28]). Based on 
this work, we opted for an approach that combined both light 
and activity history, with additional sensitivity analyses using 
only light and only activity data. In the combination approach, 
the default input to the model was light measurement (in lux); 
however, activity data was substituted when light appeared to 
be obstructed (i.e. presence of activity despite low light levels 
[activity count > 0 and lux < 100]). For the source code of this im-
plementation, see https://github.com/ojwalch/predicting_dlmo). 
A more detailed description of model specifications is included 
in the Supplementary Materials.

Initial conditions
Choosing appropriate starting conditions is a critical step for 
simulating the circadian clock model with an individual’s light/
activity history. We opted to use the estimated average DLMO in 
individuals entrained under normal living conditions (9:00 pm) 
[21]. This allows for a standardized approach and increases the 
translational utility for clinical use.

Sleep timing as a proxy of DLMO
To evaluate the unique contribution of using model predictions 
of DLMO, we also compared results against the best proxy of 
DLMO that is currently accessible in the clinic. Given that (1) the 
ICSD-3 already recommends the use of actigraphy to document 
sleep–wake patterns for assessment of Shift Work Disorder [17] 
and (2) prior evidence that sleep timing is a significant indicator 
of circadian phase in those under normal living conditions [22, 
32–34], we selected habitual timing of sleep as the best-available 
proxy of circadian phase in the clinic. We separated sleep timing 
on workdays and non-workdays to account for the fact that 
night shift workers often revert from daytime sleep (i.e. fol-
lowing night shifts) to nighttime sleep on non-workdays. Sleep 

timing specifically on non-workdays was of interest because it 
is not constrained by work schedules and thus may more likely 
reflect endogenous sleep–wake rhythms than sleep following 
night shifts. Operationally, a circular average of the timing of 
sleep derived via actigraphy was conducted by workdays and 
non-workdays for each participant, and DLMO was estimated 
at 2 h prior to average sleep time based on typical phase angle 
between DLMO and sleep time1 [32, 35, 36].

Analytical approach

Agreement between the observed and predicted DLMO was as-
sessed using Lin’s concordance coefficient, which is typically 
applied to evaluate the agreement between a new test and a 
gold standard test [37]. This approach is more rigorous than 
deriving an R2 value from an ordinary least squares approach 
because it assesses deviation from perfect agreement (i.e. a 
line-of-slope-one) instead of deviation from a line-of-best-fit. 
To account for time as a circular variable (i.e. each timepoint 
repeats every 24 h), we shifted each point of observed DLMO by 
24 h in chronological order and computed Lin’s concordance co-
efficient for each iteration. The lowest Lin’s concordance coeffi-
cient was selected to represent the point cluster with the most 
unbiased estimate of agreement. The absolute mean error was 
also calculated, along with the percentage of agreement within 
± 2 h (4 h range) and ± 4 h (8 h range) as these cutoffs approxi-
mate inclusion of 50% and 100% of DLMOs in healthy adults not 
engaged in night shift work [21].

A series of sensitivity analyses were also conducted. To 
examine if the concordance rate was generalizable to people with 
symptoms of shift work disorder, concordance was also tested in 
a subsample of shift workers with clinically significant symptoms 
(>10 on the Insomnia Severity Index, and/or >10 on the Epworth 
Sleepiness Scale; n  = 29). To explore the potential for model re-
finement, we also examined if an error in the model predictions 
varied by age, sex, years of experience on the night shift, shift start 
time, and seasonality (indexed by day length on the day of data 
collection, i.e. duration from sunrise to sunset). These variables 
were tested as a predictor via linear regression with absolute error 
as the dependent variable. Finally, we also evaluated model per-
formance when only activity data and only light data were used 
as inputs, as this may have implications for the use of activity 
trackers that do not include both light and activity sensors.

Results

Sample characteristics

A total of 45 fixed night shift workers (37 females) were in-
cluded in the final analysis, with a mean age of 39.2 (SD = 10.3, 
range  =  21–64). Participants worked between 3 and 6 night 

1	 Post hoc analyses explored additional comparators. These in-
cluded observed sleep onset, 2-h prior to sleep onset (representing 
typical phase angle from DLMO to sleep onset), and sleep midpoint 
averaged across all days, workdays only, and non-workdays only. 
A similar trend was found across comparators, with 2-h prior to 
sleep onset on non-workdays demonstrating the strongest con-
cordance with DLMO.
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shifts per week, and had been on the night shift for an average 
of 8.4 years (SD = 8.0 years). Shift start times ranged from 6:30 
pm to 12:00 am, and shift end times ranged from 5:00 am to 8:00 
am. Shift duration ranged from 8 to 13.5 h. Actiwatch collection 
period was on average 16 days ± 10.8 SD (range 4–42 days). The 
average DLMO in the laboratory was at 11:01 pm, with skew-
ness (0.08) and excess kurtosis (1.54) values falling within the 
range of a normal distribution. There was a significant spread 
in the range of DLMO values (see Figure 1). A total of 10 parti-
cipants (22%) exhibited at least partial adjustment into a com-
promised phase position (DLMO between 3:00 am and 11:00 
am) [38, 39], which is consistent with the prior rate of 23.7% 
documented in an earlier review of circadian adjustment in 
night shift workers [38].

DLMO prediction

DLMO proxy using sleep timing
First, we examined the accuracy of sleep timing on workdays 
(i.e. after the night shift) as a proxy of DLMO. Sleep timing clus-
tered within an 8.5  h window between 7:00 am and 3:30 pm, 
resulting in the DLMO proxies ranging between 5:00 am and 1:30 
pm. This range contained only 13% of the true observed DLMO 
values. Lin’s coefficient of concordance was 0.17, indicating very 
poor agreement (see Figure 2, A). The average error was −3.89 h 
and the absolute mean error was 7.46 h, with 16% of predictions 
falling within ± 2 h, and 24% of predictions falling within ± 4 h.

In determining the accuracy of sleep timing on non-workdays 
as a proxy of DLMO, we found that sleep timing fell within a 
larger window of 13 h ranging from 6:30 pm to 7:30 am. This re-
sulted in DLMO proxies ranging between 4:30 pm and 5:30 am, 
which contained 82% of the true observed DLMO values. Though 
this was significantly better than sleep timing on workdays, 
Lin’s coefficient of concordance between sleep timing on non-
workdays and DLMO was 0.38, indicating poor agreement (see 
Figure 2, B). The average error was 0.48 h and the absolute mean 

error was 3.52 h, with 29% of predictions falling within ± 2 h, and 
64% of the predictions falling within ± 4 h.

DLMO prediction using activity and light
Model predictions of DLMO using activity and light fell within a 
18.5 h window, which contained 96% of the true observed DLMO 
values. The Lin’s concordance coefficient using DLMO predicted 
from light and activity was almost twice as strong, with an es-
timate of 0.70 indicating moderately strong agreement (see 
Figure 2, C). The average difference between observed and pre-
dicted DLMO was −0.34 h, which was not significantly different 
from zero, t(44) = −0.60, p = 0.55, suggesting no bias in predic-
tions. The absolute mean error in the prediction of DLMO fitted 
to a line-of-slope-one was 2.88 h. Whereas 76% of the predic-
tions fell within ± 2 h, 91% of the predictions fell within ± 4 h. 
Examination of individual prediction errors revealed three out-
lier participants with errors above 7 h (absolute mean error sans 
outliers fell to 2.41 h).

A sensitivity analysis using a subsample of shift workers 
with clinically significant symptoms of sleep disturbance and/
or excessive sleepiness (n  =  29) indicated that the strength of 
concordance was maintained (concordance coefficient of 0.67), 
suggesting generalizability of results to a clinical setting with 
predominantly symptomatic patients.

To better understand the independent contributions of light 
and activity, a sensitivity analysis evaluated performance when 
only light data and only activity data were used as inputs to the 
model. The use of activity data by itself is of particular interest 
given the potential for use of activity trackers without light 
sensors in predicting circadian phase. Consistent with our other 
work [28], predictions generated with only light data did not 
perform as well as that generated with only activity data. The 
Lin’s concordance coefficient for predictions using only light 
data was 0.63 with a mean absolute error of 3.72 h. In contrast, 
predictions generated solely from activity data showed stronger 
concordance with observed DLMO, with a Lin’s concordance co-
efficient of 0.72 and a mean absolute error of 2.91 h.

Variance in error
Age, sex, years on the night shift, and start time of night shift 
were not significant predictors of error in model prediction. 
However, shorter day lengths (i.e. during winter months) ap-
peared to be associated with higher error (see Figure 3). In fact, 
the data showed significant exponential decay (p < 0.001), sug-
gesting that the error was substantially higher for shorter day 
lengths. Indeed, for day lengths shorter than 12 h, each hour of 
decrease in day length was associated with a 1.88 h increase in 
absolute mean error. As such, we conducted a post hoc adjust-
ment of the model by doubling sensitivity to light during shorter 
days (day length < 12 h). This reduced the absolute mean error to 
2.77 h, suggesting that accuracy in predictions can be improved 
with model refinement.

Discussion
The major barrier to the implementation of behavioral inter-
ventions for circadian misalignment in night shift workers is 
the lack of clinically feasible and accurate assessments of cir-
cadian phase in this population. Laboratory-based measure-
ment of DLMO—while being the gold standard measurement 

Figure 1.  Histogram showing the observed DLMO in night shift workers (plotted 

on a 24-h clock). The range of observed DLMOs spans nearly the entire 24-h day, 

though many are clustered around midnight.
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of circadian phase—is time and resource intensive even in day 
workers, and thus has limited feasibility in real-world clinical 
approaches. As such, this study tested the clinical translation 
of DLMO prediction using wrist actigraphy and photometry in a 
sample of fixed night shift workers.

Until recently, model predictions of DLMO have been predom-
inantly tested in individuals living largely diurnal schedules and 
work conditions; however, the clinical application of DLMO predic-
tion is most relevant for individuals with a 24-h range of circadian 
disruption. Night shift workers are among those with the most 
significant circadian disruption because they routinely experience 
extremely irregular light exposure and often have erratic sleep–
wake schedules spanning the entire 24-h period. Consistent with 
this, we observed a much larger spread of DLMO in this sample 
compared to prior studies of DLMO prediction, thereby allowing 
us to test the performance of DLMO prediction under ecologically 
valid conditions for fixed night shift workers.

Importantly, this study is the first to demonstrate that pre-
dicted DLMO using combined activity and light collected pas-
sively via wrist actrigraphs exhibited good concordance with 
gold standard DLMO measured in the lab (concordance = 0.70). 

Furthermore, the model outperformed the use of average sleep 
timing as the next best proxy of DLMO (concordance = 0.38 and 
0.17). Importantly, sleep timing generally performed poorly as 
a proxy of DLMO, thus reinforcing the need for more precise 
methods of estimating circadian phase in night shift workers. 
Additionally, the stability of circadian phase in night shift 
workers has not been well-established, so it may also be that 
sleep in the days leading up to the in-lab visit may lose pre-
dictive value over time. Together, these results point to the 
promise for validated wearable technologies as a time-sensitive, 
cost-effective, and clinically feasible tool to meet the demand 
for assessments of circadian phase. Indeed, sensitivity analyses 
suggested that the strength of concordance was maintained in 
a subsample of shift workers with clinically significant symp-
toms of insomnia and sleepiness, suggesting generalizability to 
a clinical setting.

Importantly, sensitivity analyses also indicated that using 
activity data alone as input into the mathematical model pro-
duced predictions that not only performed comparably to com-
bining light and activity data, but also outperformed predictions 
using light data alone. This provided further evidence for the 
limitations of light measurement via wrist actigraphy, and lends 
additional support for the use of activity data in estimating cir-
cadian phase. This is critical because the overwhelming ma-
jority of activity trackers in the consumer market do not include 
light sensors; however, these findings suggest that validated 
consumer-based activity trackers may have potential for infer-
ences beyond rest-activity patterns to include underlying circa-
dian biology. Future research should extend testing of this tool 
using a range of devices in individuals working shifts varying by 
timing, duration, and rotation (speed and direction).

Results from this study have critical implications for the as-
sessment and treatment of shift work disorder. First, the ICSD-3 
currently states that “sleep logs and actrigraphy are recom-
mended to demonstrate a disrupted sleep-wake pattern con-
sistent with shift work disorder” [17]. Thus, the use of actigraphy 
and sleep diary represents best practice in the clinical manage-
ment of night shift workers. However, unlike in entrained in-
dividuals under normal living conditions, our results indicate 
that the predictive value of sleep timing for DLMO is much 
more limited in night shift workers. Whereas the homeostatic 
(process S) and circadian processes (process C) are typically 
operating harmoniously in entrained individuals, the nocturnal 

Figure 3.  Average absolute error in model predictions by day length (duration 

of sunrise to sunset).

Figure 2.  Comparison of DLMO predictions using sleep timing versus activity and light. (A) Agreement with in-lab DLMO using timing of sleep onset on workdays as a 

proxy of DLMO (estimated at 2 h prior to sleep onset). (B) Agreement with in-lab DLMO using timing of sleep onset on non-workdays as a proxy of DLMO (estimated at 

2 h prior to sleep onset). (C) Agreement with in-lab DLMO using predicted DLMO from activity and light data.
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work schedule decouples these processes, thus limiting the 
predictive validity of sleep timing as an indicator of circadian 
phase. Additionally, night shift workers may be incentivized 
to sleep at times that are mismatched with their endogenous 
rhythms even on non-workdays. For example, night shift 
workers often try to maximize time with family on rest days by 
matching their sleep-wake schedules with their partner/spouse 
rather than following their endogenous rhythms. However, our 
results suggest that the same actigraphic and photometric data 
used to estimate sleep can be processed in a novel and access-
ible method to  provide more precise estimates of circadian 
phase. An open-source prototype of this tool is available via an 
internet-based portal where light and activity data from wrist-
worn devices can be uploaded to produce DLMO estimates 
(www.predictDLMO.com).

The availability of clinically feasible and increasingly ac-
curate assessments of circadian phase is critical to the progress 
of circadian medicine. Currently, the paucity of clinically feas-
ible assessments of circadian phase means that providers must 
either enact treatment plans for night shift workers without 
regard to circadian phase or resort to using inaccurate proxies 
of circadian phase (e.g. sleep timing). Using inaccurate proxies 
of circadian phase in treatments can increase the likelihood 
of adverse outcomes that exacerbate symptoms of shift work 
disorder. For example, when correcting circadian misalignment 
using bright light therapy designed to engender a phase delay, 
errors of accidental phase advances due to mistimed light ex-
posure could further exacerbate nocturnal sleepiness and day-
time insomnia. Overly large delays can also result in accidental 
misplacement of DLMO at inopportune times—such as during 
the afternoon—that can also cause nocturnal sleepiness (par-
ticularly during the first, and often busiest, portion of the night 
shift) and insomnia during the daytime. Aside from the phase 
shifting impact of light, prior research has shown that the 
alerting effect of light for night shift workers is also dependent 
on the accurate timing of light exposure [40].

Unsurprisingly, model predictions of DLMO were not as ro-
bust in night shift workers relative to healthy and entrained indi-
viduals, where the timing of DLMO is restricted to a very narrow 
range [21]. Prediction errors in this sample were also higher com-
pared to workers following a 3–5 day transition from the day to 
the night shift in Stone et al. [20], suggesting more sources of error 
should be accounted for when workers are under more chron-
ically irregular schedules of the kind seen in fixed night shift 
workers. Nevertheless, our results suggest the mean absolute 
error of model prediction is only 1–2 h higher compared to other 
samples. However, the addition of parameters to account for sys-
tematic errors, or to reduce outliers, will likely lead to improved 
accuracy of model predictions. Indeed, our results suggest that 
seasonal variations in how the mammalian circadian system re-
sponds to light (modulated by differences in the coupling of the 
ventral and dorsal regions of the suprachiasmatic nucleus [41]) 
may be an important parameter to account for. There may also be 
significant physiological differences between individual circadian 
systems that could be accounted for in the model. For example, 
a recent article found remarkable individual variation in sensi-
tivity to evening light as indexed by melatonin suppression [42]. 
When compounded by chronic exposure to irregular light-dark 
and sleep–wake schedules, individual differences in light sensi-
tivity may contribute to a range of individual circadian responses 
to night shift work. Accounting for these sources of variance in 

the DLMO estimation model will lead to improved accuracy and 
enhanced clinical utility. Finally, because these mathematical 
models were trained predominantly on data in non-clinical popu-
lations, later model specifications may need to account for the 
impact of shift work chronicity on circadian parameters such as 
amplitude, period, and/or rhythmicity (e.g. bifurcation of mela-
tonin rhythms). Thus, future refinements are likely to generate 
more accurate estimates of circadian phase in shift workers to 
produce models that are robust to variations in both external (e.g. 
rotation and direction of shifts, type of work, etc.) and internal 
sources (comorbid disorders, symptom presentations, medica-
tion effects, etc.)

Conclusions
This study represents a first step in the clinical translation of 
modeling light and activity data from wrist-worn actigraphy to 
estimate circadian phase in fixed night shift workers. Results 
demonstrated the promise of this approach as the predictions 
show good concordance with in-lab DLMO, and outperformed 
the best proxy of circadian phase currently available in the 
clinic. Future research should include individual differences to 
increase the precision and thus utility of this method for clinical 
assessment and intervention of shift work disorder.
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