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Abstract
The multidimensional sleep health framework emphasizes that sleep can be characterized across several domains, with implications for 
developing novel sleep treatments and improved prediction and health screening. However, empirical evidence regarding the domains and 
representative measures that exist in actigraphy-assessed sleep is lacking. We aimed to establish these domains and representative measures 
in older adults by examining the factor structure of 28 actigraphy-derived sleep measures from 2,841 older men from the Osteoporotic 
Fractures in Men Sleep Study and, separately, from 2,719 older women from the Study of Osteoporotic Fractures. Measures included 
means and standard deviations of actigraphy summary measures and estimates from extended cosine models of the raw actigraphy data. 
Exploratory factor analyses revealed the same five factors in both sexes: Timing (e.g. mean midpoint from sleep onset to wake-up), Efficiency 
(e.g. mean sleep efficiency), Duration (e.g. mean minutes from sleep onset to wake-up), Sleepiness/Wakefulness (e.g. mean minutes napping 
and amplitude of rhythm), and Regularity (e.g. standard deviation of the midpoint). Within each sex, confirmatory factor analyses confirmed 
the one-factor structure of each factor and the entire five-factor structure (Comparative Fit Index and Tucker–Lewis Index ≥ 0.95; Root Mean 
Square Error of Approximation 0.08–0.38). Correlation magnitudes among factors ranged from 0.01 to 0.34. These findings demonstrate the 
validity of conceptualizing actigraphy sleep as multidimensional, provide a framework for selecting sleep health domains and representative 
measures, and suggest targets for behavioral interventions. Similar analyses should be performed with additional measures of rhythmicity, 
other age ranges, and more racially/ethnically diverse samples.
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Statement of Significance
Sleep is understood to be multidimensional; however, the exact domains captured through actigraphy are not established, leading to a 
lack of clarity regarding which aspects are relevant for clinical and research purposes. Using actigraphy measures from two epidemiologic 
samples of older adults, we empirically identified five domains (Timing, Efficiency, Duration, Alertness/Sleepiness, and Regularity) and 
determined which measures are most representative of each. This actigraphy framework could be used clinically to identify targets for be-
havioral interventions (e.g. improving specific sleep health deficits through “precision therapeutics”) and can guide sleep health research 
by providing a template for variable selection, thereby enhancing reproducibility. Subsequent research should examine the multidimen-
sionality of sleep in more diverse samples and with additional sleep measures and data types.
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Introduction

In recent years, there has been a paradigmatic shift toward the 
study of sleep health, a “multidimensional pattern of sleep-
wakefulness…that promotes mental and physical well-being” 
[1]. Research and practice based on a multidimensional sleep 
health framework emphasize that all individuals’ sleep patterns 
can be characterized across several domains, regardless of the 
presence or absence of a sleep disorder. Thus, a multidimen-
sional sleep health framework aims to promote healthy sleep 
for all individuals, rather than focusing on the relatively smaller 
proportion of the population with a diagnosed sleep disorder.

A key conceptual model for multidimensional sleep health 
is called Ru-SATED [1]. Ru-SATED refers to six domains of sleep 
health based on scientific and clinical rationale: (1) Regularity: 
the consistency of sleep timing, (2) Satisfaction: the subjective 
assessment of “good” or “poor” sleep (defined here by self-report 
only), (3) Alertness/Sleepiness: the ability to maintain attentive 
wakefulness during the day; (4) Timing: the placement of sleep 
within the 24-h day; (5) Efficiency: the ability to achieve consoli-
dated sleep; and (6) Duration: the total amount of sleep obtained 
per 24  h. Rhythmicity has also been suggested as a potential 
seventh sleep health domain [2], defined as the robustness of 
the overall sleep–wake rhythm within a 24-h cycle. However, 
the exact number and type of domains have not been empir-
ically established and may differ by data type (e.g. self-report, 
actigraphy, or polysomnography [PSG]) and/or population char-
acteristics (e.g. age, sex, or race/ethnicity).

The Ru-SATED framework promotes the consideration of 
multidimensional sleep health for both clinical practice and re-
search. Ru-SATED has already informed the development of new 
sleep treatments (e.g. the Transdiagnostic Sleep and Circadian 
Intervention [3]) and there have been numerous research 
studies that used an Ru-SATED framework to examine the im-
portance of sleep health for health outcomes. For example, sev-
eral research studies have developed ad hoc sleep health scores 
by counting the number of “potentially adverse” self-reported or 
behavioral sleep characteristics across Ru-SATED sleep health 
domains. Wallace et al. [2] measured overall sleep health in older 
men using either an actigraphy or self-report measure to repre-
sent each of the Ru-SATED domains plus sleep/wake rhythmi-
city. Brindle et al. [4] examined overall sleep health in men and 
women using actigraphy and daily diary Ru-SATED domains. 
Furihata et al. [5] measured overall sleep health in older women 
using self-reported measures reflecting SATED domains (i.e. 
without Regularity). These and several other recent applications 
[6–11] of Ru-SATED all employ slightly different representative 
measures and/or domains, making it difficult to assess the re-
producibility of findings or converge on the importance of sleep 
health and its components within and across studies and health 
outcomes.

Because of the growing interest in a multidimensional sleep 
health framework for both clinical and research use, it is crit-
ical to formally establish which domains exist empirically and 
which measures are most representative of each domain. This 
information will promote the consideration of sleep health as 
a multidimensional construct, guide treatment development, 
and provide a template for selecting actigraphy measures in 
research, thereby helping to standardize the methods of the 
growing number of studies utilizing the Ru-SATED conceptual 
model. Our primary objective is to examine the factor struc-
ture of actigraphy-derived sleep health measures in two large 

epidemiological cohorts of older men and women, respectively: 
the Osteoporotic Fractures in Men (MrOS) Sleep study [12, 13] 
and the Study of Osteoporotic Fractures (SOF) [14, 15]. Based on 
Ru-SATED, prior research suggesting sleep–wake rhythmicity 
may be a separate actigraphy domain in older adults [3], and 
increased consideration of rest–activity rhythms for health re-
search [16–19], we hypothesized that the actigraphy data would 
reveal six domains reflecting measures of rhythmicity, regu-
larity, alertness/sleepiness, timing, efficiency, and duration. 
Satisfaction was not hypothesized as it is not amenable to 
measurement by actigraphy.

Methods

Participants

SOF was originally designed to determine risk factors for osteo-
porotic fractures in community-dwelling older women (https://
sofonline.epi-ucsf.org) [14, 15]. MrOS was originally designed 
to assess risk factors for osteoporotic fractures in community-
dwelling older men (http://mrosdata.sfcc-cpmc.net) [12, 13]. 
Participants in both studies provided written informed consent 
to participate in longitudinal studies of sleep health. Study de-
sign differences in MrOS and SOF precluded analyzing the two 
full samples simultaneously. Most notably, the SOF actigraphy 
data were collected in year 16 of the study (“Visit 8”), whereas 
the MrOS actigraphy data were collected in year 3 of the study 
(“Sleep Visit 1”). This resulted in SOF women being several 
years older than MrOS men on average. Therefore, to avoid con-
founding of age and sex, we examined the two samples separ-
ately in all analyses.

Participants self-reported sociodemographic and clin-
ical information via a questionnaire. This included history of 
physician-diagnosed medical conditions, health behaviors (e.g. 
alcohol and tobacco use), self-rated health, measures of phys-
ical functioning, depressive symptoms (Geriatric Depression 
Scale [20]), and anxiety symptoms (Goldberg Anxiety Index 
[21]). During an in-clinic visit, all self-reported responses were 
reviewed with an examiner. Cognition was measured using 
the Teng 3S Modified Mini Mental State Exam [22] and Mini 
Mental State Exam [23] (MMSE) in MrOS and SOF, respectively. 
For comparability, we report a 26-item modified MMSE score 
that includes the overlapping items from these two measures. 
Participants were also asked to bring in all current medica-
tions used within the preceding 30  days. All prescription and 
nonprescription medications were entered into an electronic 
database and each medication was matched to its ingredient(s) 
based on the Iowa Drug Information Service Drug Vocabulary 
(College of Pharmacy, University of Iowa, Iowa City, IA) [24].

SOF and MrOS participants were instructed to wear a 
Sleepwatch-O actigraph (Ambulatory Monitoring, Inc, Ardsley, NY) 
on their wrist for a full 4 days. However, in some situations valid 
actigraphy data were not captured (e.g. if the participant removed 
the actigraph), resulting in less than 4 days of valid data. Because a 
minimum of 3 days is required to compute some of the actigraphy 
measures, we included participants in our analytic samples if 
they had at least three valid “in-bed” and three valid “out-of-bed” 
intervals. These criteria resulted in n = 2,841 men in the MrOS ana-
lytic sample (92.9% of n = 3,058 with any actigraphy) and n = 2,719 
women in the SOF analytic sample (87.0% of n = 3,127 with any 
actigraphy). The MrOS analytic sample had a range of 3–13 days 
of actigraphy (median of 5 days). The SOF analytic sample had a 
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range of 3–9 days of actigraphy (median of 4 days). Demographic 
and clinical characteristics of the analytic samples are provided in 
Table 1. Full details regarding the derivations of the analytic sam-
ples are provided in Supplemental Figure S1.

Actigraphy processing

The Sleepwatch-O continuously monitors acceleration and 
stores the signal in 1-min epochs using three different storage 
techniques [25–27]. The data analyzed herein were stored 
using Proportional Integration Mode, a high-resolution meas-
urement of the area under the curve. Action W-2 software 
(Ambulatory Monitoring, Inc.) and the University of California, 
San Diego scoring algorithm [28] were then applied to auto-
matically score each epoch as “sleep” or “wake”. Trained 

actigraphy scorers at the San Francisco Coordinating Center 
further edited and scored the data using each participant’s 
sleep diary to mark the times when the participant got in and 
out of bed and/or indicate times when the record should be 
deleted because the participant removed the watch. These 
markers, in conjunction with the scored “sleep” and “wake” 
epochs, facilitated the computation of key daily/nightly in-
dices of sleep (e.g. sleep onset/offset time, minutes awake after 
sleep onset, and duration and frequency of napping). These 
daily/nightly indices were then summarized using means 
and standard deviations (SDs) across the monitoring period. 
Parametric extended cosine models [29] were also applied to 
the epoch-by-epoch data to produce circadian rest-activity 
rhythm variables that summarize other types of temporal fea-
tures of the monitoring period.

Table 1.  Clinical and sociodemographic characteristics of the analytic samples

Females (N = 2,719) Males (N = 2,841)

Age, mean (standard deviation) 83.53 (3.68) 76.32 (5.5)
Race, % (n)
  White 91.39 (2,485) 90.21 (2,563)
  Non-White 8.61 (234) 9.79 (278)
Education, % (n)
  ≥College education 66.46 (1,807) 56.28 (1,599)
  HS or some college education 19.49 (530) 38.40 (1,091)
  <HS education 14.05 (382) 5.32 (151)
Marital status, % (n)
  Married 27.07 (736) 84.55 (2,402)
  Widowed 61.35 (1,668) 7.60 (216)
  Other 11.58 (315) 7.85 (223)
Smoking status, % (n)
  Current 2.69 (73) 1.94 (55)
  Past 33.14 (900) 58.70 (1,667)
  Never 64.21 (1,746) 39.39 (1,119)
Any alcohol use, % (n) 41.72 (1,133) 34.24 (968)
Body mass index, mean (standard deviation) 26.86 (4.45) 27.18 (3.79)
Anxiety symptoms (GADS),* mean (standard deviation) 2.37 (2.6) 0.97 (1.89)
Depressive symptoms (GDS),† mean (standard deviation) 1.34 (2.2) 1.77 (2.16)
Cognition (26-item mMMSE),‡ mean (standard deviation) 24.26 (1.98) 24.23 (1.97)
Cognitive impairment (26-item mMMSE‡ < 21), % (n) 5.50 (137) 4.61 (131)
Self-rated health, % (n)
  1 (Excellent) 19.62 (533) 33.77 (959)
  2 (Good) 56.52 (1,535) 53.17 (1,510)
  3 (Fair) 21.76 (591) 11.87 (337)
  4 (Poor/very poor) 2.10 (75) 1.2 (34)
Number of instrumental activities of daily living that could not be performed, % (n)
  0 53.26 (1,415) 69.39 (1,970)
  1 18.74 (498) 18.56 (527)
  2 11.82 (314) 6.73 (191)
  3 8.51 (226) 3.80 (108)
  4 7.68 (204) 1.51 (43)
Number of chronic conditions§ % (n)
  0 18.3 (480) 29.58 (840)
  1 36.26 (951) 35.35 (1,004)
  2 25.89 (679) 21.41 (608)
  3 11.67 (306) 8.98 (255)
  ≥4 7.89 (207) 4.68 (133)
Total number of prescription medications, mean (SD) 4.49 (3.05) 3.86 (3.02)

*Goldberg Anxiety Index.
†15-item Geriatric Depression Scale.
‡26-item Modified Mini Mental State Exam (mMMSE). A score < 21 corresponds to an MMSE < 24.
§The following conditions were considered: stroke, angina, heart failure, heart attack, high blood pressure, diabetes, chronic obstructive pulmonary disease, osteopor-

osis, and arthritis.
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Variable selection and coding

Although actigraphy scoring algorithms produce sleep–wake 
characteristics for each day and night, we focused on measures 
that summarize information across the observation period be-
cause they allow examining features of habitual sleep that align 
with our hypothesized domains (e.g. rhythmicity and regularity). 
To date, these summary measures have been most commonly 
used in sleep health research, largely because of their interpret-
ability and ability to be used as predictors of key prospective 
health outcomes.

We developed an initial pool of 28 actigraphy summary vari-
ables that: (1) provided a thorough representation of actigraphy 
variables currently used in research for sleep health in older 
adults; (2) were clinically and/or scientifically meaningful; and 
(3) were available to us in the MrOS and SOF samples. When 
uncertain as to whether to include a variable, we erred on the 
side of being over-inclusive. Because obtaining statistical con-
vergence on large factor structures can be challenging, we 
coded variables as ordinal (five categories) based on quintiles 
from the respective MrOS or SOF sample. This approach facili-
tated convergence by standardizing the range of variables and 
reducing the effects of extreme outliers and/or highly skewed 
distributions, all of which are common in actigraphy data [30]. 
Table  2 lists and describes the selected actigraphy measures. 
Supplemental Table S1 displays the quintiles for each actigraphy 
variable in each sample.

Factor analysis methods

We randomly split each sample into two subsamples: one for 
exploratory factor analysis (EFA) and the other for confirma-
tory factor analysis (CFA). EFA and CFA were conducted using R 
version 3.5.1. For EFA we used the fa function within the psych 
package and for CFA, we used the cfa function within the lavaan 
package.

For EFA, we used polychoric correlations, a Promax rotation, 
and median imputation (default within the R function) to handle a 
very small amount of missing actigraphy data (0.7% in MrOS, 2.4% 
in SOF). No specific domains were imposed on the data. To deter-
mine the number of factors, we examined the eigenvalues, visually 
inspected scree plots, and considered our hypotheses. We empir-
ically assigned a variable to a factor if it had a factor loading >0.40 
[31]. Because our main interest was in understanding the factor 
structure, if a variable loaded on multiple factors, we made the pri-
mary assignment to the factor on which it had the highest loading 
and noted any secondary assignments in our interpretation.

We then performed CFAs for ordered data on the independent 
male and female confirmatory samples to validate the factor 
structure identified in the EFAs. As the CFA methods required 
complete data samples, we omitted a small number of cases 
with missing data (0.9% in MrOS; 3.3% in SOF). We fit two types 
of CFAs for each sex: (1) separate CFA models for each factor 
to determine whether a single factor structure was present 
and (2) a full-model CFA to determine whether the multifactor 

Table 2.  Actigraphy variables considered in the factor analysis

Variable name Variable description

Number of naps Mean of number of naps per day of duration ≥5 min
Minutes napping Mean of minutes napping per day, considering only naps ≥5 min
Mesor* The middle of the peak, computed as Minimum + Amplitude/2
Pseudo-F* Pseudo-F goodness of fit statistic from ECM. Higher values indicate better conformity to extended  

cosine curve
Amplitude* Amplitude from the extended cosine model
Beta* Determines whether the function rises and falls more steeply than the cosine curve. Large values  

produce nearly square curves
Alpha* Width of peaks relative to troughs from ECM. Large values indicate the peaks are narrow and the 

troughs are wide; small values indicate the peaks are wide and the troughs are narrow
Time in bed Mean of minutes from bed to wake-up time
Time from onset to wake-up (TOW) Mean of minutes from sleep onset to wake-up time
TST Mean of minutes of sleep from bedtime to wake-up time
Bedtime Mean of bedtime
Sleep onset time Mean of sleep onset time
Midpoint (bed interval) Mean of midpoint of bed to wake-up time
Midpoint (onset interval) Mean of midpoint of sleep onset to wake-up time
Wake-up time Mean of wake-up time
Acrophase* Time of maximum activity from the extended cosine model
Up-mesor* Time of switch from low to high activity (above to below mesor) from the ECM
Down-mesor* Time of switch from high to low activity (below to above mesor) from the ECM
Wake after sleep onset Mean of minutes awake after sleep onset
Sleep efficiency TST/TIB × 100
Sleep maintenance TST/TOW × 100 
Sleep latency Mean of minutes from bed to sleep onset time 
Minimum* Minimum value of activity function from ECM
SD wake-up time Standard deviation of wake-up time
SD midpoint (onset interval) Standard deviation of midpoint of sleep onset to wake-up time
SD midpoint time (bed interval) Standard deviation of midpoint of bed to wake-up time 
SD sleep onset Standard deviation of sleep onset time
SD bedtime Standard deviation of bedtime

*Computed from extended cosine model (ECM).
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structure identified in the EFA would hold and to examine cor-
relations among factors. For each CFA model, we examined the 
Comparative Fit Index (CFI), Tucker–Lewis Index (TLI), and the 
Root Mean Square Error of Approximation (RMSEA) to assess 
goodness of fit [32, 33]. If a variable did not have a loading >0.40 
on any factor in the CFA, it was removed and the models were 
rerun without it.

Finally, to further assess factor cohesion, we examined 
spearman correlations of the original continuous variables 
within each identified factor. Correlations were examined sep-
arately in the full MrOS and SOF analytic samples.

Results

Sample partition

We randomly split each of the male and female samples into 
two non-overlapping subsamples for EFA (n = 1,359 for female; 
n = 1,420 for male) and CFA (n = 1,360 for female; n = 1,421 for 
male). Within the CFA samples, 96.7% of females (n = 1,315) and 
99.1% of males (n = 1,408) had complete actigraphy data for use 
in the CFA analysis, which does not allow missing observations. 
(See Supplemental Figure S1.)

Exploratory factor analysis

The patterns of eigenvalues were nearly identical for the female 
and male samples (Figure 1). After examining the eigenvalues, 
we chose to more closely inspect the 4-, 5-, 6-, and 7-factor struc-
tures based on three main observations: (1) there was clearly a 
multiple-factor solution as evidenced by the fact that the ratio 
of the first and second eigenvalue was >4; (2) the steep decrease 
in the first four eigenvalues suggested that two or three-factor 
solutions were not upheld by the data; and (3) the first 7 factors 
had eigenvalues larger than 1 for both samples (range of first 
7 eigenvalues = 6.08–1.18 for females and 6.15–1.36 for males). 
After inspecting the results of the 4-, 5-, 6-, and 7-factor struc-
tures, we selected the 5-factor structure because it provided the 
most interpretable scenario, showed clear and consistent factor 

loadings, and largely aligned with our hypothesized structure. 
Because all 28 actigraphy variables had loadings > 0.40 in the 
5-factor structure for both samples, we retained all 28 variables.

Table 3 displays the 5-factor structures for the EFAs in the 
male and female samples. Across samples, the 28 actigraphy 
variables were grouped identically, the only difference being 
the order of Factors 3 and 4. Therefore, for interpretability and 
consistency across samples, we reordered Factors 3 and 4 in the 
results for men. When selecting labels for the factors, we con-
sidered factor loadings, interpretation, and our prior hypotheses 
based on the Ru-SATED domains.

Factor 1: Timing (8 variables)
All measures reflected either the means of sleep timing vari-
ables (e.g. bed, sleep onset, and wake-up) or timing-related es-
timates from the extended cosine model (acrophase, up-mesor, 
and down-mesor).

Factor 2: Efficiency (5 variables)
Four of the five measures reflected either minutes awake at night 
(minutes awake after sleep onset [WASO] and sleep latency) or 
the percentage of time spent asleep (e.g. sleep efficiency). The 
minimum from the extended cosine model also loaded on this 
factor, which is consistent with the factor interpretation because 
an individual with very efficient sleep and/or very little time 
awake at night would tend to have a low estimated minimum of 
the rest/activity function. For both males and females, total sleep 
time (TST) had a primary loading on Factor 3 (Duration) but had 
secondary loadings on Factor 2 (loadings of −0.44 for males and 
−0.49 for females). This finding reflects the relationship between 
TST and WASO in community-dwelling older adults whose sleep 
schedules were not constrained by study methods. It suggests a 
continuum of sleep propensity: as sleep increases, wakefulness 
decreases, and vice versa. However, the relationship between 
TST and WASO can vary depending upon study or participant 
characteristics (e.g. if a behavioral treatment/intervention [34] is 
employed that restricts or extends TIB).

Factor 3: Duration (4 variables)
Three of the four measures related to the durations of sleep 
and/or time spent in bed. The alpha parameter from the ex-
tended cosine model also loaded on this factor. In a well-fitting 
extended cosine model (i.e. with a high pseudo-F), large values 
of alpha indicate that the peaks of the rest/activity rhythm are 
narrower than the troughs. An individual with longer sleep dur-
ation would tend to have wider troughs (times of inactivity) rela-
tive to their peaks (times of activity) and thus a larger alpha. 
Some measures with primary assignments to the timing factor 
loaded secondarily on the duration factor, albeit with relatively 
low factor loadings. These included wake-up time and up-mesor 
in both samples (loadings of 0.44 for males and 0.46 for females) 
and bedtime in the male sample (loading of −0.42). As earlier 
bedtimes and later wake-up-times tend to be related to longer 
duration in an unconstrained sleep setting, their secondary 
loadings within this factor are consistent with its interpretation.

Factor 4: Alertness/sleepiness (5 variables)
This factor included measures we originally hypothesized to 
load on an Alertness/Sleepiness domain (number of naps per 
day, minutes napping per day, and mesor from the extended 
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Figure 1.  Scree plot displaying eigenvalues for the MrOS and SOF samples.
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cosine model) as well as variables, we hypothesized to load on 
a separate rhythmicity domain (the pseudo-F statistic and amp-
litude). Although we considered both Alertness/Sleepiness and 
Rhythmicity to be reasonable labels for Factor 4, we ultimately 
selected Alertness/Sleepiness because all of the measures reflect 
this dichotomy to some degree: mesor represents the middle of 
the sleep–wake peak, amplitude is the difference between sleep 
and wake, pseudo-F reflects the level of separation of sleep and 
wake, and duration/frequency of napping reflects the fragmen-
tation of sleep–wake periods throughout the day. The Alertness/
Sleepiness label also better reflects the Ru-SATED framework, 
which was the motivation for this work.

Factor 5: Regularity of sleep timing (6 variables)
This factor included the standard deviations of sleep-related 
timing measures and the beta parameter from the extended co-
sine model. Beta reflects whether the function rises and falls more 
steeply than the cosine curve, with large values producing curves 
that are nearly square waves. In a well-fitting model with a high 
pseudo-F, waves that are more square-like could indicate a faster 
(i.e. more regular) shift between periods of “sleep” and “wake”.

Finally, because we originally hypothesized six factors, we 
also examined the 6-factor structure closely. In both samples, 

it suggested the same five factors as in the five-factor structure, 
plus a sixth factor that included only alpha and down-mesor. 
Therefore, the five-factor structure provided a clearer and more 
cohesive interpretation.

Confirmatory factor analysis

Prior to performing CFAs, we reverse coded variables so that 
interpretations were consistent within each factor and, where 
relevant, higher values would reflect better sleep health. All 
CFAs were performed on the independent CFA samples. Across 
CFAs, all variables loaded well on their corresponding factors for 
both samples except beta, with loadings <0.40. Therefore, beta 
was removed from Factor 5 and the CFAs were rerun. The final 
CFA loadings within each factor were very similar across sam-
ples and CFAs. CFA results are provided in Table 4.

The correlations among the 5 factors from the CFA model are 
displayed in Table  5. The magnitudes of most correlations were 
small (<0.30), indicating relatively independent domains, and 
were largely comparable across male and female samples. For 
women, only two correlation magnitudes were ≥0.30 (Efficiency and 
Regularity, r = 0.34; Timing and Duration, r = −0.30). For men, only 
Efficiency and Duration had a magnitude correlation ≥0.30 (r = 0.32).

Table 3.  Factor structure from separate exploratory factor analyses of females and males

Females Males

 F1 F2 F3 F4 F5 F1 F2* F3* F4 F5

Factor 1: Timing
Midpoint (Bed to Wake-Up) 0.87 −0.07 0.01 0.03 0.01 0.88 −0.04 0.04 0.03 0.04
Midpoint (Sleep Onset to Wake-Up) 0.87 0.06 0.03 0.03 0.03 0.86 0.09 0.05 0.05 0.06
Acrophase† 0.84 0.01 0.03 −0.07 −0.06 0.84 −0.02 0.01 −0.12 −0.07
Wake-Up Time 0.80 0.03 0.46 0.04 0.01 0.82 0.03 0.44 0.04 0.01
Up-Mesor† 0.73 0.04 0.46 −0.02 0.08 0.75 0.04 0.44 −0.03 0.10
Sleep Onset Time 0.70 0.06 −0.39 0.00 0.08 0.71 0.09 −0.33 0.06 0.08
Down-Mesor† 0.67 −0.03 −0.28 −0.04 −0.13 0.62 −0.05 −0.28 −0.09 −0.16
Bedtime 0.67 −0.17 −0.42 0.04 0 0.72 −0.12 −0.35 0.04 0.04
Factor 2: Efficiency
Sleep Maintenance 0.01 −0.81 0.01 0.02 −0.01 −0.01 −0.84 0.09 0.06 −0.04
Sleep Efficiency −0.02 −0.8 0.11 0.07 −0.09 −0.01 −0.83 0.06 0.06 0.00
Wake After Sleep Onset −0.02 0.77 0.19 0.00 0.00 0.04 0.82 0.13 −0.08 −0.02
Minimum† −0.06 0.66 −0.02 0.18 −0.11 −0.05 0.51 0.08 0.32 −0.17
Sleep Latency 0.16 0.45 −0.01 −0.11 0.14 0.05 0.54 0.03 0.01 0.11
Factor 3: Duration
Time from Sleep Onset to Wake-Up 0.03 −0.03 0.84 0.01 −0.09 0.05 −0.08 0.80 −0.03 −0.10
Time from Bed to Wake-Up 0.08 0.23 0.79 −0.03 0.01 0.08 0.16 0.81 −0.02 −0.05
Total sleep time 0.02 −0.44 0.73 0.00 −0.08 0.05 −0.49 0.65 0.01 −0.09
Alpha† −0.12 0.08 0.57 0.02 0.16 −0.13 0.07 0.55 0.07 0.19
Factor 4: Alertness/Sleepiness
Amplitude† −0.06 −0.18 −0.07 −0.75 0.09 −0.06 −0.07 −0.06 −0.75 0.13
Number of Naps per Day −0.08 −0.09 −0.05 0.75 0.11 −0.06 −0.12 0.01 0.74 0.12
Pseudo-F† −0.06 −0.08 0.05 −0.74 −0.14 −0.05 −0.06 0.13 −0.71 −0.13
Minutes Napping per Day −0.06 −0.08 −0.07 0.73 0.11 −0.08 −0.11 −0.03 0.73 0.14
Mesor† −0.08 0.24 −0.12 −0.68 0.05 −0.1 0.28 −0.05 −0.62 0.07
Factor 5: Regularity (SD = Standard Deviation)
SD Midpoint (Bed to Wake-Up) 0.02 −0.05 −0.02 0.09 0.76 0.06 −0.09 −0.05 0.05 0.78
SD Midpoint (Sleep Onset to Wake-Up) 0.02 0.09 −0.04 0.06 0.73 0.05 0.09 −0.08 0.06 0.75
SD Bedtime −0.08 −0.02 −0.06 0.02 0.64 −0.02 −0.05 −0.01 0.03 0.66
SD Sleep Onset Time −0.03 0.23 −0.05 0.01 0.62 0.00 0.23 −0.03 0.06 0.61
SD Wake-Up Time 0.12 −0.03 −0.02 0.08 0.59 0.07 −0.02 −0.04 0.02 0.61
Beta† 0.00 0.30 −0.08 0.27 −0.49 0.05 0.16 −0.07 0.31 −0.46

*F3 and F4 were reversed for consistent interpretation with females.
†Computed using extended cosine model.
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CFA fit indices are displayed in Table 6. For both the single- 
and multifactor CFAs across men and women, the CFIs and TLIs 
were ≥0.95, indicating that the average correlation among vari-
ables on each factor was sufficiently high [32, 33]. The RMSEA 
ranged from 0.08 to 0.38 in the single-factor CFAs and was 0.22 
for both male and female multifactor CFAs. Although these 
RMSEA values are outside of the range of what is typically con-
sidered a “good fit” (RMSEA < 0.06) [32, 33], they are consistent 
with RMESA values observed in other studies of multidimen-
sional sleep [35].

The CFA factor loadings in Table 4 indicate the representa-
tiveness of each measure for its respective factor. For Factor 
1 (Timing), the mean midpoint from bed to wake and mean 
midpoint from sleep onset to wake-up had the highest load-
ings across samples (0.95–0.97). For Factor 2 (Efficiency), mean 
sleep maintenance had the highest loading across samples 
(1.00–1.02). For Factor 3 (Duration), mean time from sleep onset 
to wake-up had the highest loadings across samples (1.00–1.04). 
For Factor 4 (Alertness/Sleepiness), mean minutes napping per 
day and mean number of naps per day had the highest loadings 

Table 4.  Confirmatory factor analysis results from males and females

Female Male

 All factors on single run
Each factor on  
separate run All factors on single run

Each factor on 
separate run

Factor 1: Timing
Midpoint (Bed to Wake-Up) 0.95 0.95 0.97 0.97
Midpoint (Sleep Onset to Wake-Up) 0.96 0.96 0.97 0.97
Acrophase† 0.86 0.87 0.86 0.86
Wake-Up Time 0.90 0.91 0.90 0.9
Up-Mesor† 0.88 0.89 0.86 0.87
Bedtime 0.88 0.88 0.92 0.92
Sleep Onset Time 0.91 0.90 0.92 0.92
Down-Mesor† 0.85 0.81 0.82 0.80
Factor 2: Efficiency
Sleep Efficiency 0.91 0.91 0.96 0.96
Sleep Maintenance 1.01 1.01 1.01 1.01
WASO‡ 0.95 0.95 0.96 0.96
Sleep Latency‡ 0.59 0.54 0.57 0.53
Minimum†,‡ 0.52 0.53 0.42 0.45
Factor 3: Duration
Time from Sleep Onset to Wake-Up 1.01 1.03 1.00 1.04
Time from Bed to Wake-Up 0.81 0.83 0.84 0.85
Total sleep time 0.80 0.78 0.88 0.78
Alpha† 0.72 0.55 0.52 0.42
Factor 4: Alertness/Sleepiness
Amplitude† 0.89 0.88 0.81 0.82
Number of Naps per Day‡ 0.95 0.95 0.95 0.95
Minutes Napping per Day‡ 0.94 0.94 0.93 0.93
Pseudo-F† 0.80 0.79 0.77 0.75
Mesor† 0.79 0.80 0.71 0.72
Factor 5: Regularity
SD Midpoint (Bed to Wake-Up)‡ 0.85 0.87 0.93 0.94
SD Midpoint (Sleep Onset to Wake-Up)‡ 0.92 0.91 0.93 0.92
SD Bedtime‡ 0.68 0.71 0.81 0.82
SD Sleep Onset Time‡ 0.81 0.78 0.86 0.84
SD Wake-Up Time‡ 0.65 0.63 0.70 0.70

*F2 and F3 were switched for consistent interpretation with females.
†Computed using extended cosine model.
‡Reverse coded.

Table 5.  Correlations among factors

Females

  Timing Efficiency Duration Alertness/Sleepiness Regularity 

Males Timing – −0.07 (0.01) −0.30 (<0.01) 0.03 (0.29) −0.12 (<0.01)
Efficiency −0.07 (0.01) – 0.11 (<0.01) 0.10 (<0.01) 0.34 (<0.01)
Duration −0.22 (<0.01) 0.32 (<0.01) – −0.06 (0.03) −0.01 (0.86)
Alertness/Sleepiness −0.03 (0.30) 0.01 (0.64) 0.02 (0.50) – 0.06 (0.03)
Regularity −0.17 (<0.01) 0.27 (<0.01) 0.07 (0.01) 0.09 (<0.01) –

Cells show estimated correlation between factors (p-value).
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across samples (0.93–0.95). For Factor 5 (Regularity), the SD of the 
midpoint from sleep onset to wake-up had the highest loading 
across samples (0.92–0.93) and the SD of the midpoint from bed 
to wake-up had high factor loadings in the male sample (0.93–
0.94). A total of 7 factor loadings across all CFA analyses ranged 
from 1.01 to 1.04. Loadings >1 indicate an overfitted item, likely 
due to redundant information among the variables. However, we 
retained these measures in the model because of their content 
importance and our focus on understanding the factor structure 
of actigraphy rather than developing an instrument.

Correlations within factors

As an additional check of factor cohesion, we computed 
Spearman correlations among the original continuous variables 
within each factor using the full male and female samples. The 
majority of pairwise correlations were moderate-to-large. For 
males, the median (minimum, maximum) Spearman correl-
ations were 0.70 (0.22, 0.96) for Factor 1 (Timing), 0.44 (0.22, 0.96) 
for Factor 2 (Efficiency), 0.52 (0.28, 0.88) for Factor 3 (Duration), 
0.59 (0.36, 0.91) for Factor 4 (Alertness/Sleepiness), and 0.70 (0.30, 
85)  for Factor 5 (Regularity; excluding Beta). For females, they 
were 0.71 (0.26, 0.94) for Factor 1 (Timing), 0.53 (0.21, 0.96) for 
Factor 2 (Efficiency), 0.55 (0.38, 0.84) for Factor 3 (Duration), 0.65 
(0.46, 0.90) for Factor 4 (Alertness/Sleepiness), and 0.62 (0.22, 
0.76) for Factor 5 (Regularity; excluding Beta). Within each sex 
and for a given factor, no more than two pairs of measures had 
correlation magnitudes <0.30. Full correlation matrices are pro-
vided in Supplemental Tables S3–S7.

Discussion
We empirically identified and validated five actigraphy-assessed 
sleep health domains in large community-based samples of 
older men and women: Timing, Efficiency, Duration, Alertness/
Sleepiness, and Regularity. The domains were remarkably con-
sistent across male and female samples and largely aligned with 
our hypothesized domains based on the self-report Ru-SATED 
sleep health framework comprised of Regularity, Satisfaction, 
Alertness/Sleepiness, Timing, Efficiency, and Duration domains 
(because Satisfaction is subjective, it was not a hypothesized 
actigraphy domain). Findings from our study also suggest a fo-
cused set of measurements for clinical and research use. While 
dozens of actigraphy variables exist, only five are needed to rep-
resent underlying domains. For example, the mean midpoint 
from sleep onset to wake-up (Timing), mean sleep maintenance 
(Efficiency), mean time from sleep onset to wake-up (Duration), 

mean minutes napping per day (Alertness/Sleepiness), and the 
SD of the midpoint from seep onset to wake-up (Regularity) 
can be selected as a representative, relatively independent set 
of actigraphy measures with strong empirical justification in 
older adults.

We also hypothesized a separate Rhythmicity domain based 
on increased consideration of actigraphy rest-activity rhythms 
for health research. However, it was not upheld by the data. 
Hypothesized measures of rhythmicity (pseudo-F and ampli-
tude) loaded with measures of napping (duration/frequency 
of naps) on the domain we named Alertness/Sleepiness. This 
finding underscores the fact that these measures are highly 
interrelated. More fragmentation of the activity rhythm during 
the day (i.e. more napping) decreases the difference in magni-
tude between the “sleep” and “wake” phases (i.e. lower ampli-
tude) and results in less conformity of the rest-activity rhythm 
to the parametric extended cosine function (i.e. lower pseudo-F). 
Their inter-related nature can also be directly observed through 
the moderate-to-large pairwise correlations among these meas-
ures in the MrOS and SOF samples (Spearman r = −0.62 to −0.68 
for pseudo-F and duration/frequency of napping; r  =  −0.47 
to −0.56 for amplitude and duration/frequency of napping). 
However, there are several reasons why this finding may be spe-
cific to our sample and/or study design. First, MrOS and SOF are 
samples of older adults, who tend to have both dampened circa-
dian rhythms and increased napping relative to younger adults 
[36, 37]. Second, roughly 5% of MrOS and SOF participants had 
impaired cognition based on the MMSE. As dampened rest–ac-
tivity rhythms and increased napping are associated with worse 
cognition [38–42], it is possible that applying similar methods in 
a sample of older adults without any impaired cognition could 
produce different findings. Third, the parametric measures of 
rhythmicity that were used may not fully capture the nuances 
of between- and within-day rhythmicity in older adults, espe-
cially given the limited number of days of monitoring. We may 
have been able to see a unique rhythmicity factor with alterna-
tive (e.g. nonparametric) measures of rhythmicity and/or more 
days of monitoring. Thus, it will be important to apply similar 
methods in samples of different ages and with more nuanced 
measures of rhythmicity to further assess this finding.

Results from our study will help to extend the sleep health 
framework to answer important research and clinical questions. 
Most directly, our findings can guide sleep health research by 
suggesting a set of relatively independent measures for analysis. 
This set of measures opens possibilities for several different 
analyses. For example, the measures can be simultaneously 
be included in within a single predictive model, categorized 
and used to compute a sleep health score, and/or examined in 

Table 6.  Fit statistics from CFAs

Female Male

 CFI TLI RMSEA (90% CI) CFI TLI RMSEA (90% CI)

Factor 1: Timing 0.98 0.98 0.36 (0.35, 0.37) 0.96 0.98 0.37 (0.36, 0.38)
Factor 2: Efficiency 1.00 1.00 0.16 (0.14, 0.18) 1.00 1.00 0.09 (0.07, 0.11
Factor 3: Duration 1.00 1.00 0.08 (0.05, 0.11) 1.00 1.00 0.08 (0.05, 0.11)
Factor 4: Alertness/Sleepiness 0.98 0.97 0.33 (0.31, 0.35) 0.97 0.95 0.38 (0.36, 0.40)
Factor 5: Regularity 0.98 0.96 0.22 (0.20, 0.24) 0.99 0.97 0.26 (0.24, 0.28)
Full 5-Factor Model 0.96 0.95 0.22 (0.22, 0.22) 0.97 0.97 0.22 (0.21, 0.22)

CFI, comparative fit index; TLI, Tucker–Lewis Index; RMSEA, root mean square error of approximation; CI, confidence interval.
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clustering models to reveal common phenotypes of sleep health 
characteristics [10]. Regardless of the particular statistical model 
(which should ideally be guided by the specific research ques-
tion), our findings can enhance reproducibility and generaliz-
ability across studies by clarifying the multidimensionality of 
actigraphy-assessed sleep health and providing a template for 
the selection of representative measures. Our findings can also 
inform clinical practice. The sleep health framework has already 
proven useful in understanding several key outcomes, including 
depression [5], mortality [3, 10, 11], and adolescent health [8], 
and has also informed novel treatments (e.g. the Transdiagnostic 
Sleep and Circadian Intervention [2]). The identified actigraphy 
factors and representative measures will further guide and ac-
celerate this work.

To our knowledge, this is the first formal attempt to em-
pirically evaluate the factor structure of actigraphy assessed 
sleep health. We focused our analysis on actigraphy because it 
is relatively easy and inexpensive to collect over a long period 
of time, making it a key tool for larger epidemiological studies 
of sleep. Actigraphy also uniquely allows for monitoring of 
habitual, long-term behavioral sleep–wake patterns including 
regularity and rhythmicity [43]. However, there are limitations 
of actigraphy. Actigraphy captures physical rest–activity pat-
terns rather than sleep per se, making it is less accurate for 
measuring actual sleep than the “gold standard” PSG. Also, the 
standard summary measures we examined (means and SDs of 
various sleep characteristics across days/nights) are derived 
in part through manual actigraphy scoring. Manual actigraphy 
scoring is labor intensive, especially for a large study, and it 
interjects some subjectivity into the actigraphy measures, 
although a study conducted in a subset of SOF participants 
showed high inter-subject scorer agreement [27]. Given the 
increasing availability of raw accelerometry data and ad-
vances in machine learning, our findings may help to guide 
the derivation of new metrics that further inform sleep health 
measurement. As these metrics are validated, they may also 
provide automated techniques for more rapidly and consist-
ently analyzing actigraphy data.

It is important to consider our findings from actigraphy in 
the context of findings observed using other sleep data types, 
each of which provides unique information. Most notably, 
factor analytic methods have been used to examine the di-
mensionality of retrospective self-report sleep with the aim 
of developing new self-report sleep indices including SATED/
Ru-SATED [1, 44, 45], the National Sleep Foundation Sleep 
Health Index (SHI) [46], and the National Institute of Health 
Patient-Reported Outcomes Information System (PROMIS) 
Sleep measure [35]. Our own analyses were based on the 
Ru-SATED framework and thus our findings align closely with 
this measure. In contrast, the SHI includes only three domains 
(Sleep Quality, Sleep Duration, and Disordered sleep) and the 
PROMIS Sleep measure includes only two domains (Sleep 
Disturbance and Sleep Related Impairments). These differ-
ences can largely be explained by the investigators’ distinct 
conceptual and/or methodological frameworks. For example, 
SHI and PROMIS allowed sleep disorder symptoms (e.g. dif-
ficulty falling asleep), while Ru-SATED explicitly considered 
only quantifiable sleep characteristics (e.g. minutes to fall 
asleep). Moreover, PROMIS included only likert-scale self-
report measures that could be validated using Item Response 
Theory, and for this reason did not include any quantitative 

self-report data (e.g. sleep timing or duration). Overall, the 
more “behavioral” and quantifiable nature of Ru-SATED makes 
it an ideal framework on which to base our actigraphy sleep 
health factor analysis.

PSG and self-report daily sleep diary also play important 
roles in the study of sleep health, and factor analyses of meas-
ures captured using these data types may suggest different 
domains. For instance, a previous factor analysis of PSG sleep 
in depressed and healthy adults identified factors reflecting 
slow-wave sleep, rapid eye movement (REM) sleep, sleep con-
tinuity, and REM latency/delta sleep ratio [47]. While PSG can 
uniquely measure sleep architecture and is considered the “gold 
standard” of sleep measurement, its utility across many cohorts 
is limited because it is much more expensive and burdensome 
(e.g. requiring an overnight lab visits and/or set-up of in-home 
monitoring equipment). Furthermore, PSG is often based on a 
single night, and thus, the resulting metrics do not necessarily 
reflect an individual’s usual sleep [48], nor can measures of re-
gularity or rhythmicity be obtained. In contrast, sleep diary pro-
vides habitual, daily monitoring of subjective sleep and thus 
could plausibly capture all six proposed Ru-SATED domains [49, 
50]. Sleep diaries are also potentially more available and less ex-
pensive than actigraphy, making them a key tool in sleep health 
research. However, sleep diaries require ongoing effort of parti-
cipants to complete, which can result in missing data, and are 
subjective and limited in their ability to capture wakefulness 
during the night. Regardless, it will be important to apply con-
sistent factor analytic methods to self-report sleep diary and 
PSG and compare findings with those from actigraphy.

The strengths of our study include the consistency of our 
findings across exploratory and confirmatory analyses of men 
and women and our use of large and well-characterized sam-
ples of community-dwelling older adults from multi-site epi-
demiological studies. However, there are some study limitations 
to note. First, the MrOS and SOF samples captured a median of 
five and four days/nights of actigraphy, respectively, with a min-
imum of three nights each. While 3 days/nights is sufficient for 
estimating the mean of actigraphy measures in older adults, up 
to 7 days/nights may be required for accurately measuring re-
gularity using standard deviations [51]. We also cannot discount 
the possibility that additional days and nights of actigraphy 
might have improved estimation of rhythmicity measures and 
resulted in the observance of a separate rhythmicity domain 
as hypothesized. Even so, these same extended cosine features 
are highly predictive of key prospective health outcomes in the 
MrOS and SOF samples [3, 16, 18, 19, 38–40, 42, 52], indicating 
that they capture important aspects of older adults’ sleep–wake 
activity despite the limited numbers of days/nights of measure-
ment. Second, our findings are generalizable primarily to older, 
white adults. It will be important to apply similar methods to 
other samples with more diversity of age and race/ethnicity. 
Third, some goodness of fit statistics from the CFAs were not 
within the traditional range of “good fit”. Optimizing fit indices 
is less relevant for our work in understanding factor structures 
[53]. They are only one piece of information within the larger 
context of our analyses, which ultimately showed remarkable 
consistency, clarity, and interpretability across analyses. Still, it 
will be important to perform further validations of our findings 
in additional samples. Fourth, direct comparisons of our sleep 
health findings between males and female are somewhat con-
founded by sample differences. For example, women from SOF 
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were almost 10  years older than males from MrOS and were 
also substantially more likely to be widowed rather than mar-
ried. Finally, in future studies it will be important to consider 
nonparametric rest activity rhythms that were not currently 
available for our use in the MrOS and SOF cohorts (e.g. inter-
daily stability or intra-daily variability [54]). Such metrics pro-
vide flexibility for examining within- and between-day patterns 
without imposing a specific parametric model (i.e. the extend 
cosine curve).

Conclusion
We empirically identified and validated five actigraphy-measured 
sleep health domains in older men and women (Timing, 
Efficiency, Duration, Alertness/Sleepiness, and Regularity) and 
determined which specific measures are most representative of 
each domain. These findings have the potential to guide innova-
tive sleep health research and impact clinical practice and public 
health by improving health screening and suggesting novel treat-
ments. Critical next steps are to examine the factor structure in 
more diverse samples and additional data types. Developing and 
validating factor scores to represent each factor may also serve 
to enhance subsequent analyses of sleep and health.

Supplementary material
Supplementary material is available at SLEEP online.
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