
1

SLEEPJ, 2021, 1–3

doi: 10.1093/sleep/zsab020
Editorial

© Sleep Research Society 2021. Published by Oxford University Press on behalf of the Sleep Research Society. 
All rights reserved. For permissions, please email: journals.permissions@oup.com

Editorial

Miles to go before we sleep…a step toward 
transparent evaluation of consumer sleep tracking 
devices
Cathy A. Goldstein1,* and Christopher Depner2

1University of Michigan Sleep Disorders Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109 and 
2Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112

*Corresponding author. Cathy A. Goldstein, University of Michigan Sleep Disorders Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109. Email: 
cathygo@med.umich.edu

A paradox exists in sleep medicine and research—disordered 
sleep is detrimental through nightly, chronic exposure to sleep 
disturbances over months to years, but our gold-standard ap-
proach to assess sleep, the polysomnogram (PSG) [1], is generally 
used in the laboratory and is not practical for more than one 
to two nights of consecutive sleep assessments. Thus, current 
PSG technology lacks the capacity to assess sleep in an ecologic-
ally valid environment outside the laboratory where night-to-
night variation in sleep disturbances likely occur over months 
to years.

Use of US Food and Drug Administration (FDA) cleared 
actigraphs has long been accepted by the research and med-
ical communities as a sound method to track sleep over days 
to weeks in the ambulatory environment [2–4]. However, wide-
spread utilization of actigraphy is limited by several factors. 
For example, actigraphs are expensive, typically monitor only 
motion without other physiological signals, and usually do not 
transmit information to clinicians or researchers in real time. 
Additionally, the information derived from actigraphs requires 
laborious data cleaning [3, 5]. Despite the resources required, use 
and interpretation of actigraphy is not typically reimbursed by 
insurers, which limits clinical utilization. From a research stand-
point, the significant time, expertise, and cost of actigraphy 
data collection and interpretation often restrict study size and 
duration.

Consumer sleep tracking devices provide a relatively easy, in-
expensive way to assess sleep over months to years, and their 
near ubiquitous use in modern society presents a potential 
solution to the problem of assessing sleep in the ambulatory 

environment. However, unclear performance and reliability of 
consumer sleep technologies (CSTs) has delayed clinical and 
research implementation [6–8]. Guidelines to assess the per-
formance of CSTs have been disseminated, but strategies to sys-
tematically implement these guidelines are lacking and are a 
stated need to advance sleep medicine and research [7, 8].

In this issue of SLEEP, Menghini and colleagues address 
this need by providing a step-by-step analytic framework, ac-
companied by open-source R functions, to evaluate the per-
formance of sleep trackers [9]. The procedures detailed by the 
authors are aimed at standardizing data collection processes, 
analytical techniques, and terminology used to describe results 
of studies designed to assess the sleep estimation capabilities 
of CSTs. Although PSG is the recommended gold-standard com-
parator, the framework presented here is flexible and adapt-
able to other reference sleep measures and can be applied to 
standard actigraphy. Additionally, the presented methods and 
calculations are applicable to systems that differentiate sleep 
from wake or classify sleep stages.

Importantly, throughout the manuscript, the authors urge 
that the term “validity” is replaced by “performance.” Validity 
is defined as “the quality or state of being valid: such as the 
quality of being well-grounded, sound, or correct.” Therefore, 
use of the term validation to describe the act of comparing 
two sleep assessment methods is faulty and such use of 
the term in this context should be abandoned by our field. 
For example, performance thresholds to “validate” CST de-
vices against PSG are not established and are likely to vary 
between populations and study outcomes. Findings reporting 
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performance of a device against PSG, or another device, allow 
the end-user to determine if the device performance meets 
their stated needs. Critically, such performance measures 
must be conducted prior to implementing any CST for clinical 
or research purposes.

Supporting prior specifications [7, 8], the authors recommend 
that epoch-by-epoch (EBE) data is sought from the CST manufac-
turer to allow for comparison of simultaneous time increments 
between the CST system (device and analytic platform) and ref-
erence measure. For systems that provide EBE data, the first step 
of their pipeline [9] provides instructions to appropriately struc-
ture the data. For example, in settings where the epoch duration 
of the CST system does not match the 30-second epoch used to 
score PSG, reconciliation is required. Additionally, the start and 
end of the time in bed period monitored by the CST must be syn-
chronized with lights on and lights off. Finally, annotated data 
from the CST system and PSG must share the same codes for 
each state (wake, sleep, etc.) to prepare the data for analysis.

Building upon prior recommendations [7, 8], Menghini and 
colleagues describe appropriate EBE analysis methods starting 
with the construction of error matrices that identify correct and 
misclassified sleep categories (i.e. wake, light, deep, and stage R 
sleep) by the CST system. Error matrices are then used to compute 
sleep-stage sensitivity and specificity. To account for individual-
level differences, the authors recommend constructing error 
matrices for each study participant to calculate individual sleep-
stage specificity and sensitivity prior to averaging group level 
values. To facilitate these calculations, both individual and abso-
lute (error matrices calculated with aggregate data) computation 
methods are included in the corresponding R code.

In addition to sensitivity and specificity, positive predictive 
value, negative predictive value, prevalence index, and bias 
index are identified as useful metrics that should be calculated 
from EBE data to further characterize CST system performance. 
Other additional EBE computations included in the authors’ 
framework consist of McNemar’s test, Kappa coefficient and 
prevalence-adjusted bias-adjusted kappa (given imbalance be-
tween sleep and wake epochs during the usual sleep period), 
and receiver operating characteristic curves.

The manuscript also sets forth analysis procedures that 
are applicable even when CST system output is only available 
in summary form over the course of the night. A discrepancy 
analysis is necessary in the comparison of any new testing 
method to gold-standard. Techniques to systematically con-
duct a discrepancy analysis are provided and the computa-
tions that underlie these metrics are described in detail. The 
measurement differences between CST system and PSG, for 
each sleep parameter, should first be evaluated on an indi-
vidual level. Subsequently, systematic and random error are 
quantified by bias and 95% level of agreement, calculations 
that are contingent on assumptions of constant bias (bias in-
dependent from measurement size), homoscedasticity (error 
consistent over measurement sizes), and normal distribution 
of differences. Therefore, tests for these assumptions are also 
included in the open-source R functions associated with this 
publication.

After the procedures and rationale for each analysis step 
are provided, Meghini and colleagues apply their open-source 
tool to data from an investigation that compared a widely used 
CST to PSG in 14 healthy adults. The pipeline was success-
fully deployed for data structuring, and discrepancy and EBE 

analysis. The discrepancy analysis demonstrated violations of 
constant bias, homoscedasticity, and normal distribution as-
sumptions and exemplified the role of linear regression to ex-
press bias and bootstrapping and logarithmic transformation 
for heteroscedasticity and non-normal distributions. Bland 
Altman plots of CST and PSG differences for each sleep param-
eter (total sleep time, sleep efficiency, wake after sleep onset, 
light sleep duration, deep sleep duration, REM sleep duration) 
allow the readers to visualize the scenarios of (1) all assump-
tions satisfied, (2) proportional bias with homoscedasticity, (3) 
constant bias with heteroscedasticity, and (4) both proportional 
bias and heteroscedasticity. Next, error matrices were tabulated 
from the example EBE data and revealed the sleep state mis-
classifications underlying the discrepancy analysis findings, 
highlighting the benefits of this comprehensive approach to as-
sess CST system performance.

The work and companion R functions (https://github.com/
SRI-human-sleep/sleep-trackers-performance) by Menghini 
and colleagues operationalize the recommended techniques for 
analyzing the performance of CSTs- against PSG (or other refer-
ence) for comparison studies. The authors satisfied the need for 
tools to improve efficiency and reproducibility and reduce het-
erogeneity of investigations into CST performance.

Numerous limitations translating CST performance from 
in-laboratory investigations to the free-living environment exist 
and include passive time in bed detection, home sleep environ-
ment factors (e.g. spouse or pets), reliability over time, assessing 
sleep periods outside of the main sleep bout, output scores that do 
not correspond to clinical or scientific metrics (e.g. nightly sleep 
score), and concerns related to use in certain populations with 
co-morbid disorders. Further, CST system performance is specific 
to the device and associated firmware and software versions, and 
the ability to extrapolate these results after sensor, algorithm, 
and other updates remains unclear. Nonetheless, Meghini and 
colleagues brought us one step closer to standardized and trans-
parent use of CSTs and we recommend adopting their guidelines.

Objective sleep parameters, recorded over time, provide 
distinct and valuable information over self-report for the clin-
ical evaluation and management of various sleep disorders [4]. 
Additionally, a growing body of research has revealed the im-
portance of sleep parameters beyond sleep duration [10–16], 
which are only feasibly obtained through passive, objective 
sleep recording over time. Therefore, the utility of CSTs tran-
scends the current use cases for actigraphy as the duration of 
sleep tracking with CSTs far exceeds the usual one to 2 weeks 
of sleep recorded with actigraphs. Rational, transparent, and 
scientifically sound use of CSTs may capture previously un-
identified changes in sleep over months, seasons, and years 
relevant to health and disease. Therefore, a pipeline to improve 
the efficiency of CST performance assessment is crucial and is 
well-positioned to advance sleep medicine and research.
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