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Abstract
Study Objectives:  Studies examining time-use activity behaviors (sleep, sedentary behavior, and physical activity) on school days compared with nonschool days 

have examined these behaviors independently, ignoring their interrelated nature, limiting our ability to optimize the health benefits of these behaviors. This study 

examines the associations of school-day (vs. nonschool day) with time-use activity behaviors.

Methods:  Time series data (6,642 days) from Fitbits (Charge-2) were collected (n = 196, 53% female, 5–10 years). We used a variable-centered dynamic structural 

equation modeling approach to estimate day-to-day associations of time-use activity behaviors on school days for each child. We then used person-centered cluster 

analyses to group individuals based on these estimates.

Results:  Within-participant analysis showed that on school days (vs. nonschool days), children (1) slept less (β = −0.17, 95% CI = −0.21, −0.13), (2) were less sedentary 

(β = −0.05, 95% CI = −0.09, −0.02), and (3) had comparable moderate-to-vigorous physical activity (MVPA; β = −0.05, 95% CI = −0.11, 0.00). Between-participant analysis 

showed that, on school days, children with higher sleep carryover experienced greater decreases in sleep (β = 0.44, 95% CI = 0.08, 0.71), children with higher body 

mass index z-score decreased sedentary behavior more (β = −0.41, 95% CI = −0.64, −0.13), and children with lower MVPA increased MVPA more (β = −0.41, 95% CI 

−0.64, −0.13). Cluster analysis demonstrated four distinct patterns of connections between time-use activity behaviors and school (High Activity, Sleep Resilient, High 

Sedentary, and Dysregulated Sleep).

Conclusions:  Using a combination of person-centered and more traditional variable-centered approaches, we identified patterns of interrelated behaviors that 

differed on school, and nonschool days. Findings can inform targeted intervention strategies tailored to children’s specific behavior patterns.
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Statement of Significance
Sleep, physical activity, and sedentary behavior exist on an interdependent movement continuum that mutually influences children’s health. Using novel dy-

namic structural equation modeling, we simultaneously measured the bidirectional effects of sleep, sedentary behavior, and physical activity in order to establish 

“Granger causality”; systems where current behavior predicts future behavior. The utility of such research lies in the potential to intervene upon one behavior (i.e. 

sleep tonight) while simultaneously improving a related future behavior (i.e. sedentary tomorrow). Using cluster analyses, we identified four distinct interrelated 

patterns of sleep, sedentary behavior, and physical activity, both on school and nonschool days. Results can inform targeted interventions to simultaneously im-

prove sleep, reduce sedentary behavior, increase physical activity, and ultimately prevent childhood obesity.
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Introduction

Sleep, sedentary behavior, and physical activity exist on a 
continuum of movement from sleep (i.e. no/low movement) to 
vigorous-intensity physical activity (i.e. high movement) and 
each have been independently linked with obesity and health 
outcomes [1–4]. Many studies regarding children’s sleep and 
physical activity have examined these behaviors in isolation, 
which neglects their interconnected and nature. Although 
some work has begun to examine multiple time-use activity 
behaviors within a day, using techniques such as compos-
itional analysis [5], there is a dearth of research examining 
the links between movement behavior patterns from one day 
to the following day, and across multiple days. While sleep 
and sedentary behavior are both low energy expenditure, low 
movement behaviors, sleep is uniquely characterized by dis-
tinct physiological and psychological phenomena [6]. Physical 
activity on the other hand is characterized by high energy 
expenditure and movement, but represents a proportionally 
smaller portion of children’s time-use [7]. In line with the re-
cently released 24-h movement guidelines for children and 
youth [8], there is growing interest in determining whether 
there is a virtuous/vicious cycle between children’s nighttime 
sleep duration and daytime sedentary behavior and physical 
activity [9, 10].

Studies that examine the temporal connections between 
time spent in different time-use activity behaviors have shown 
inconsistent results. Some studies have reported higher phys-
ical activity levels during the day are predictive of shorter sub-
sequent sleep duration [11, 12], while others have found the 
opposite [9], and still others have found no association [13]. 
A  potential explanation for these mixed results is the failure 
to simultaneously examine bidirectional effects of multiple 
time-use activity behaviors, which limits our ability to establish 
“Granger causality”; systems where variable “x” predicts future 
variables of “y” [14]. Granger causality has been widely applied 
in economics literature, but only sparsely used in behavioral re-
search [15]. Granger causal questions aim to compare the bidir-
ectional nature of time-use activity behaviors (e.g. “does sleep 
predict sedentary behavior more than sedentary behavior pre-
dicts sleep?”). Though not true causality, comparing the relative 
strength of the cross-lagged associations can provide direction 
for future study and add clarity to theory [16]. Only recently has 
emerging literature begun to explore the temporal dynamics of 
time-use activity behaviors [9, 17]. The limited research that has 
examined Granger causality has found shorter sleep duration 
on a given night is followed by higher PA and increased seden-
tary levels the following day [11, 18]. The utility of such research 
lies in the potential to intervene upon one behavior (i.e. sleep to-
night) while simultaneously improving a related future behavior 
(i.e. sedentary behavior tomorrow).

A limitation of this literature in its current form is the 
focus on “average” behavior on a typical day; with little at-
tention to how individual behavior on a specific day might 
impact subsequent behavior [19]. This focus also implies that 
youth exhibit uniform patterns of the connection between 
sleep and activity [20]. It is plausible that the predictors of, 
and links between, time-use activity behaviors vary as a func-
tion of time and context within individuals and vary as a func-
tion of magnitude or intensity between individuals [19]. The 
identification of unique behavior patterns has the potential 

to inform improvements in planning and implementing ef-
fective behavioral interventions [20].

Time-use activity behavior patterns are influenced by both 
person-level factors (e.g. perceived competence) as well as ex-
ternal constraints (i.e. school) [21]. Children spend a majority 
of their waking time in school on school days [22] and as such, 
understanding its impact on multiple health behaviors holds 
significant public health relevance. There is mounting evidence 
that, compared with school days, on nonschool days children 
have poorer quality and delayed sleep, more sedentary behavior, 
and less physical activity [23, 24]. However, these findings are 
based on group mean averages and may not capture the hetero-
geneity of an individual child’s behavioral response to attending 
versus not attending school on any specific day. This focus on 
“average” effects may partially explain the lackluster impact of 
school-based interventions on children’s activity [25]. This is be-
cause findings from between-person associations may not be 
equivalent at the within-person level [26]. If the objective is to 
build more effective multiple health behavior change interven-
tions, the results obtained at the within-participant level might 
be more informative as they represent dynamical processes (i.e. 
co-variations), and thus, contrast with the between-participant 
analyses that represent average associations over time.

A person-centered analysis approach that specifically in-
corporates variability within-individuals may reveal more tar-
geted or flexible intervention opportunities and ultimately 
greater overall improvements in intervention effectiveness [20]. 
The current study takes a person-centered analytical approach 
to explore the impact of school on time-use activity behaviors by 
identifying patterns of behaviors based on Granger causal tem-
poral associations between multiple time-use activity behaviors 
(i.e. sleep, sedentary, and physical activity) from day-to-day.

Methods

Setting and participants

This study utilized data from a larger longitudinal project [27, 
28], which collected data from three schools in a single school 
district in South Carolina. One school followed a year-round 
schedule while the other two followed a traditional schedule 
and served similar student populations. Traditional schools fol-
lowed a calendar that condensed the 180-day school year into 
9  months, with a summer break between June 1 and August 
17. The year-round school spread the 180 school days equally 
throughout the calendar year, taking a shorter more frequent 
breaks (i.e. summer break between June 12 and July 19). Table 1 
presents the demographics of the participating schools and in-
dividual participants. The sample was 53.9% girls, mean age 7.0 
(SD = 1.2). A majority of the sample was African American (64.6%) 
or White (28.9%), with 6.6% identifying as a different race. Nearly 
half of the sample had an annual household income of less than 
$30,000. Data were processed for 196 children over 6,642  days 
(median 22 days/child).

Procedures

All kindergarten through fourth grade students enrolled at the 
participating schools were invited to participate in the study 
in the Spring of 2018. A consent letter was sent home to the 
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parents describing the study procedures. Consenting parents 
signed and returned the letter to research staff via school per-
sonnel. Of the 254 children whose parents consented, a total 
of 240 were randomly selected to participate in the study (160 
traditional school, 80  year-round school). Participants in the 
study received a Fitbit Charge 2 to wear in the spring academic 
semester of 2018 (i.e. April) and wore the Fitbit for 20 consecu-
tive weeks (i.e. August 2018). Children were instructed to wear 
the devices at all times including when they slept, showered/
bathed, and swam (i.e. 24-h wear protocol). Participants were 
incentivized to sync, but not necessarily wear the devices. 
All protocols were approved by the lead author’s University 
Institutional Review Board.

Measurement of physical activity and sleep

As described previously [28], physical activity and sleep were 
measured using a Fitbit Charge 2 (Fitbit Inc., San Francisco, 
California). Fitbit Charge devices have been shown to have 
good agreement with polysomnography (PSG) and electrocar-
diography when estimating sleep and heart rate [29, 30]. In 
a recent meta-analysis of multichannel Fitbit devices (those 
measuring both movement and heart rate), there were no 
significant differences between Fitbit and PSG estimation of 
wake after sleep onset (effect size = 0.16, 95% CI −0.12 to 0.44), 
total sleep time (effect size = −0.15, 95% CI −0.43 to 0.13), or 
sleep efficiency (effect size = −0.27, 95% CI −0.65 to 0.13) [31]. 
Furthermore, multichannel Fitbit devices have shown good 
agreement with wrist-worn scientific grade devices used to 
assess free-living sleep in school-age children [32]. Procedures 
for processing the Fitbit data have been described in detail 
elsewhere [28]. Data processing was informed by the ISCOLE 
data processing protocols [33].

Only days with at least 10 of valid awake “wear time” were 
included. Fitbit sleep data was exported to identify child sleep 
periods. A  “sleep period” was defined as >160 consecutive 

minutes classified as “asleep” [34]. Based on previous param-
eterizations of nocturnal sleep [35], nocturnal sleep onset was 
defined as the first minute of a sleep period that started be-
tween 7:00 pm and 05:59 am. Nocturnal sleep offset was identi-
fied as the last minute of a sleep period between 05:00 am and 
11:58 am. If nocturnal sleep periods were separated by less 
than 20  min, they were combined but only if the first sleep 
onset and last sleep offset were within the time windows spe-
cified above [33]. In the current study, sleep was quantified as 
the sum of minutes classified by the Fitbit device as asleep 
between sleep onset and sleep offset. The flow of participants 
and days of data as a result of these parameterizations is pre-
sented in Figure 1.

To distill the heart rate data into activity intensity levels, 
each child’s resting heart rate was calculated each day of wear. 
Resting heart rate was defined as the average of the lowest 
10-min beats-per-minute for each day [36–39]. Resting heart 
rates that were above the 95th (90 beats per minute [bpm]) or 
below the 5th (50 bpm) percentile were considered implausible 
and were replaced with the nearest day that the child had a 
plausible resting heart rate. Heart rates were distilled into ac-
tivity intensity levels based on percent heart rate reserve (HRR). 
That is, 0.0%–19.9% of HRR equaled sedentary, and ≥50.0% 
equaled MVPA [40, 41]. As described in prior publications [28], 
percent HRR was calculated using the following formula: heart 
rate minus resting heart rate, divided by maximum heart rate 
minus resting heart rate. Since a maximal exercise test was 
not conducted, 197 bpm was used as the maximum heart rate 
for all children [42]. Additional details regarding processing of 
Fitbit Data can be found in Supplementary Material.

Sleep period data were removed from awake physical ac-
tivity data which was then distilled into minutes of waking time 
children spent sedentary and in MVPA on each day. School days 
(n = 3,231) were defined as any day (Monday–Friday) when school 
was in session. Nonschool days (n = 3,411) included weekends, 
spring break, school holidays, and summer break.

Table 1.  Demographics

Number of participants (n) 199
Male (%) 46.1
Mean age at baseline (SD) 7.0 (1.2)
Grade at baseline (%)  
  Kindergarten 7.0
  First 21.3
  Second 29.3
  Third 28.2
  Fourth 14.3
Race (%)  
  African American 64.6
  White 28.9
  Other 6.6
Income (%)  
  <$30,000 annually 49.5
  ≥$30,000 annually 50.5
Mean BMI z-score (SD) 0.76 (1.15)
Mean days of data (SD) 39.4 (41.6)
Mean awake wear time/day (SD) 759.1 (225.3)
Mean sedentary minutes/day (SD) 312.7 (116.3)
Mean sleep minutes/day (SD) 468.1 (50.6)
Mean MVPA minutes/day (SD) 79.1 (39.9)

Figure 1.  Flow of participants through data reduction.
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Statistical analysis

Outliers on the outcomes of sleep, sedentary behavior or MVPA 
>3 SD from the mean were winsorized prior to analyses [43]. We 
used dynamic structural equation modeling (DSEM) in Mplus 
v.  8.2 to model the bidirectional dynamics of sleep and ac-
tivity. DSEM is a framework that combines multilevel modeling, 
structural equation modeling, time-series modeling, and time-
varying effects modeling [44]. Structural equation models can 
handle multiple-dependent variables, and thus are well suited 
for examining cross-lagged models and bidirectional effects.

The multilevel model used latent-centering to decom-
pose the variance in sleep, MVPA and sedentary behavior into 
within-person and between-person components. The level 1 
within-person model estimated autoregressive parameters or 
“carryover” (i.e. the association of yesterday’s sleep with tonight’s 
sleep) and cross-lagged or “spillover” parameters (i.e. the effect 
of tonight’s sleep on tomorrow’s MVPA). School day (whether 
an individual given day was a school day) was included as a di-
chotomous level-1 predictor of sleep, sedentary behavior, and 
MVPA. The level 2 between-person model estimated the person-
level associations between “average” behaviors. Child body mass 
index z-score (zBMI) measured in spring 2018 was included as a 
between-person covariate as weight status has previously been 
linked to time-use activity behaviors among youth [4].

Average “carryover” (i.e. impact of one day on the following 
day) for sleep, sedentary behavior, and MVPA was estimated 
using an autoregressive lag-1 (AR-1) model which allows for es-
timation of the effect of a variable on itself from the preceding 
observation (i.e. lag 1). An autoregressive (or carryover) value 
close to zero implies a strong attraction dynamic; meaning, after 
a high or low score, the individual will quickly return to their 
equilibrium or “set point” on the following observation (i.e. typ-
ical level of sleep or activity). In contrast, an autoregressive value 
closer to one implies more carryover from one day to the next. 
A  child with a high sedentary autoregressive value has high 
carryover and would be likely to have several consecutive days 
in a row with high or low sedentary behavior above or below 
their set-point/equilibrium. In other words, their high sedentary 
behavior would “carryover” onto the next day. Negative values of 

the autoregressive term have a different interpretation, because 
they imply reflexive back-and-forth shifting between scores 
above and below the equilibrium (called antipersistance) [45]. 
Antipersistance is a type of carryover that manifests as a “saw 
tooth pattern” where a night of short sleep is followed by a night 
of excessive sleep greater than that child’s typical nighttime 
sleep. Additional details regarding fitting and interpretation of 
the DSEM model can be found in Supplementary Material.

After fitting the DESM model, within-person standard-
ized model estimates (averaged over individual) were used in 
a cluster analysis to identify subgroups of behavior patterns 
within the sample. Model implied standardized estimates were 
used rather than measured variables because the focus of this 
analysis was on the associations between behaviors across indi-
viduals. Given the limited sample size, a Wards cluster analysis 
was conducted in SPSS v. 26. Means for all variables were calcu-
lated for each cluster. Then, for each case, the squared Euclidean 
distance to the cluster means was calculated and summed for all 
cases. At each step, the two clusters that merge were those that 
result in the smallest increase in the overall sum of the squared 
within-cluster distances. The coefficient in the agglomeration 
schedule was within-cluster sum of squares at that step, not the 
distance at which clusters were joined. Criterion validity was as-
sessed by ANOVAs and Chi-squared tests to examine differences 
in clusters’ zBMI and overall time-use activity behaviors (MVPA, 
sedentary behavior, and sleep) and demographics. Face validity 
was established using consensus of two experts in cluster pro-
filing. This procedure was then further verified using a K-Means 
cluster approach to assess similarity in cluster profiling.

Results

Descriptive examination of individual DSEM 
patterns

The DSEM unstandardized estimates for the fixed and random 
parameters, and their 95% credible intervals (CI) are presented 
in Table  2 with corresponding paths represented in Figure  2. 
The within-person standardized model estimates are presented 

Table 2.  Unstandardized estimates and 95% credible intervals for fixed effects and random effects of DSEM

Fixed effects (means) Random effects (variances)

Variable Path symbol† Estimate Lower 2.5% Upper 2.5%  Estimate Lower 2.5% Upper 2.5%

BMI z-score  0.747 0.556 0.941 * 1.595 1.265 2.038
Average sleep across all days μ Sleep 469.132 461.252 476.859 * 2,031.694 1,462.111 2,822.006
Average sedentary across all days μ Sedentary 306.361 288.691 323.887 * 12,652.785 9,669.310 16,632.932
Average MVPA across all days μ MVPA 80.546 74.518 87.003 * 1,503.262 1,161.964 1,964.624
Effect of sedentary today on sedentary tomorrow‡ φ Sed→Sed 0.184 0.142 0.226 * 0.030 0.015 0.054
Effect of sleep tonight on sedentary tomorrow‡ φ Sleep→Sed −0.166 −0.226 −0.103 * 0.054 0.029 0.098
Effect of sedentary today on sleep tomorrow night‡ φ Sed→Sleep −0.086 −0.124 −0.047 * 0.021 0.010 0.039
Effect of sleep tonight on sleep tomorrow night‡ φ Sleep→Sleep −0.060 −0.106 −0.010 * 0.030 0.016 0.053
Effect of MVPA today on MVPA tomorrow‡ φ MVPA→MVPA 0.128 0.083 0.175 * 0.036 0.021 0.058
Effect of sleep tonight on MVPA tomorrow‡ φ Sleep→MVPA −0.053 −0.077 −0.028 * 0.006 0.003 0.012
Effect of MVPA today on sleep tonight‡ φ MVPA→Sleep −0.084 −0.181 0.012  0.093 0.043 0.185
Effect of school today on sedentary today‡ φ School→Sed −4.909 −9.484 −0.197 * 442.637 262.359 741.242
Effect of school today on sleep last night‡ φ School→Sleep −10.541 −14.247 −7.074 * 308.960 196.984 475.679
Effect of school today on MVPA today‡ φ School→MVPA −0.480 −2.277 1.320  50.863 27.064 89.796

*Significance based on 95% credibility intervals.
†Symbols correspond to paths presented in Figure 2.
‡Variables included in cluster analysis.
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in-text. The current model explained 18.5% of the within-person 
variability in sleep and 15.2% of the within-person variance in 
sedentary behavior and 9.2% of the within-person variability 
in MVPA.

Autoregressive effects

We examined the within-person standardized cross-lagged co-
efficients (averaged over cluster) [16]. The autoregressive value 
for sleep was negative and significantly different from zero 
(standardized estimate  =  −0.058, 95% CI −0.098 to −0.017; see 
φSleep→ Sleep, Figure 1 and Table 2). The negative sign indicates 
antipersistance; if a child has a night of less than typical sleep, 
he/she is more likely to get relatively more than usual sleep the 
following night. Although statistically significantly different 
than zero, the autoregressive value is closer to zero than one, 
which indicates relatively low carryover; After a night of more 
or less sleep than typical (i.e. a perturbation to the system), a 
child will have a small amount of “compensatory” sleep the 
following night.

The autoregressive value for sedentary behavior, on the 
other hand was larger than the carryover for sleep, and was 
positive and significantly different from zero (standardized esti-
mate = 0.184, 95% CI 0.150 to 0.219; see φSed→ Sed, Figure 1 and 
Table 2), indicating some carryover. This suggests that days of 
relatively high sedentary behavior are likely to be followed by 
days of relatively high sedentary behavior, and conversely, that 
relatively low sedentary behavior is likely to be followed by rela-
tively low sedentary behavior.

Similarly, the autoregressive value for MVPA was positive and 
significantly different from zero (standardized estimate = 0.129, 

95% CI 0.093 to 0.165; see φMVPA→ MVPA, Figure 1 and Table 2), 
indicating previous days MPVA positively predicted MVPA the 
following day.

Cross-lagged effects

In the current study, the standardized effect of sedentary be-
havior on nighttime sleep (standardized estimate = −0.127, 95% 
CI −0.173 to −0.080), indicated that days of higher sedentary 
behavior were followed by nights of reduced sleep. The stand-
ardized effect of nighttime sleep on sedentary behavior (stand-
ardized estimate  =  −0.109, 95% CI −0.145 to −0.075), similarly 
indicated that nights of shortened sleep were followed by higher 
sedentary behavior. Notably, the average within-person effect of 
sleep on sedentary behavior was stronger than the effect of sed-
entary behavior on sleep.

The standardized effect of MVPA on sleep was nonsignificant 
(standardized estimate  =  −0.056, 95% CI −0.112 to −0.000). 
The standardized effect of sleep on MVPA (standardized esti-
mate = −0.076, 95% CI −0.106 to −0.044) showed that nights of 
shortened sleep were followed by days of relatively more MVPA.

School-day associations

Whether days were school or nonschool was included as a 
within-person (level-1) predictor of sleep, MVPA and seden-
tary behavior. Children slept relatively less on school nights (i.e. 
nights preceding a school day; standardized estimate = −0.170, 
95% CI −0.209 to −0.130) compared with nonschool nights. 
Children also had less sedentary behavior on school days 

Figure 2.  Multilevel DSEM examining bidirectional effects of sleep, sedentary behavior, and MVPA. Note: Unstandardized path estimates shown on Table 2. (W) indicates 

within-person estimates.
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compared with nonschool days (standardized estimate = −0.054, 
95% CI −0.092 to −0.015). Children’s MVPA was not significantly 
different on school days compared to nonschool days (standard-
ized estimate = −0.013, 95% CI −0.049 to 0.023).

Between-person associations

In addition to the averaged within-person standardized results, 
the between-person correlations between the random effects 
were included in the model. Between-person level association 
can be thought of as representing the average or trait-level of 
a behavior. Significant between-person correlation paths are 
shown on the bottom portion of Figure 2.

There was a significant correlation between overall MVPA 
and the association between MVPA and school such that chil-
dren who had low MVPA compared to their peers, experienced 
greater change in their MVPA on school, versus nonschool days 
(standardized estimate = −0.410, 95% CI −0.635 to −0.131).

Children who had high sleep carryover experienced an even 
greater decrease in sleep on school days compared with children 
with low carryover (standardized estimate = 0.439, 95% CI 0.075 
to 0.709). Children who had a strong connection between sleep 
and sedentary behavior, correspondingly had a weaker connec-
tion between sleep and MVPA (standardized estimate = −0.489, 
95% CI −0.766 to −0.062) Similarly, children who had a strong 
connection between school and sedentary behavior, had a rela-
tively weaker connection between school and MVPA (standard-
ized estimate = −0.488, 95% CI −0.718 to −0.154). Children who 
had more sedentary behavior on average had less overall MVPA 
(standardized estimate = −0.496, 95% CI −0.623 to −0.342).

Lastly, there was a significant association between zBMI and 
the slope for school days and sedentary behavior. Specifically, 
children with a higher zBMI experienced a bigger decrease in 
sedentary behavior on school days compared to nonschool days 
(standardized estimate = 0.270, 95% CI 0.023 to 0.500).

Cluster analysis

Variables included in the cluster analysis are indicated in Table 2. 
Cluster analysis results are presented in Figures 3, A–C and 4, 
A–B. Four distinct clusters were identified. Children in cluster 
1 (High Activity; n = 71) had significantly more MVPA compared 
with children in the other clusters f(3,192) = 16.12, p < 0.01 (see 
Figure 4, A) as well as the most MVPA carryover from one day to 
the next f(3,192) = 35.46, p < 0.01 (see Figure 3, A). For children 
in the High Activity cluster, sedentary behavior was a stronger 
predictor of subsequent night’s sleep, compared to the reverse 
(see Figure 3, C).

Children in cluster 2 (Sleep Resilient; n = 26) had the lowest 
sleep carryover (f(3,192) = 14.40, p < 0.01; see Figure 3, A) and ex-
perienced the smallest reductions in sleep on school days com-
pared with nonschool days (f(3,192) = 60.75, p < 0.01). Children in 
the Sleep Resilient cluster also had less sedentary behavior on 
school days compared with their nonschool days f(3,192) = 48.86, 
p < 0.01 (see Figure 3, B).

Children in cluster 3 (High Sedentary; n = 60) had significantly 
more sedentary behavior compared with children in other clus-
ters f(3,192) = 7.17, p < 0.01 (see Figure 4, A). They also had more 
sedentary behavior on school days compared to their nonschool 
days (f(3,192) = 48.86, p < 0.01; see Figure 3, B).

Children in cluster 4 (Dysregulated Sleep; n  =  39) had the 
most sleep carryover f(3,192)  =  14.40, p  <  0.01 (see Figure  3, 
A). Compared to children in other clusters, children in the 
Dysregulated Sleep cluster had significantly less sleep on school 
days compared to nonschool days f(3,192) = 60.75, p < 0.01 (see 
Figure 3, B).

Children in the Sleep Resilient cluster had significantly 
lower zBMI both at baseline f(3,162),  =  5.33, p  <  0.01, and 
follow-up f(3,156), = 4.19, p < 0.01 (see Figure 4, B). Children in 
the High Sedentary cluster were older compared to other clus-
ters f(3,192) = 2.90, p = 0.04. Clusters did not differ with respect 
to average levels of sleep f(3,192) = 2.50, p = 0.06 (see Figure 4, 
A). There were no cluster differences in Fitbit wear time 
f(3,192) = 0.72, p > 0.05, or by demographics including sex, house-
hold composition, parent employment, income or school type 
(see Supplementary Table S1). Post hoc analyses revealed no 
significant cluster differences in sleep efficiency, sleep onset, or 
sleep offset (see Supplementary Table S2).

Discussion
The objective of the current study was to examine the bidirec-
tional temporal associations between sleep, sedentary behavior, 
and MVPA among school age children and explore if these re-
lationships differed on school days compared to nonschool 
days. In order to move beyond conventional assumptions about 
average participants, we used a within-person (DSEM) approach 
to identify individual level Granger causal links between time-
use activity behaviors. We then used a person-centered (cluster 
analysis) approach to identify distinct patterns of behavioral as-
sociations across-days.

Results from the within-person analyses showed that on 
average, there was a significant bi-directional association be-
tween nighttime sleep and sedentary behavior. Nights of 
relatively shorter sleep were likely to be followed by days of rela-
tively more sedentary behavior. Conversely if a child engaged 
in relatively more sedentary behavior during the day, that child 
would likely have relatively less sleep that night. Comparing the 
standardized estimates revealed that, for an average child in the 
sample, there was a stronger connection between sleep and sed-
entary behavior compared to sleep and MVPA.

These findings are consistent with previous studies that 
have explored the relationship between nighttime sleep and 
sedentary behavior [46]. This association may be driven causally 
(i.e. reduced sleep increases next day fatigue) or could perhaps 
be driven by other factors such as the use of electronic devices 
[47]. The use of more electronic devices (usually coinciding with 
sedentary behavior) can directly displace nighttime sleep and 
the light emitted from screens can impact circadian timing and 
physiological sleep [48]. Consistent with past research exploring 
the bidirectional relationship between nighttime sleep and sed-
entary behavior in young children [18], the effect of sleep on 
sedentary behavior was stronger than the effect of sedentary 
behavior on sleep. This finding might point to the effectiveness 
of sleep interventions to additionally reduce sedentary behavior 
[49].

Findings from this study also indicate a relationship be-
tween nighttime sleep and subsequent MVPA, where a night of 
relatively short sleep is likely to be followed by a day of rela-
tively higher MVPA. Upon first inspection these results can 
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appear counterintuitive. The mechanism for this relationship 
is unclear, as it might be expected that shorter sleep duration 
would predict lethargy (and thus less MVPA) the following day, 

as seen in experimental sleep restriction studies among adults 
[50]. However, these results are consistent with past research 
between nighttime sleep and MVPA in free-living children [11, 

Figure 3.  (A–C) Means of standardized estimates for clusters. Asterisk indicates statistically significant group difference between all clusters at p < 0.05.
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12, 51]. It may be that this relationship exists as a function of 
bounded time. For instance, if a child sleeps less at night there 
are more hours in the day to engage in physical activity, con-
sistent with a “filled time” perspective [52, 53]. Additionally, 
while MVPA did not appear to predict subsequent sleep dur-
ation, it is possible that aspects of sleep, such as sleep quality or 
sleep architecture (the cyclic pattern between different stages 
of sleep), may be influenced by daytime activity [54]. Future 
studies might explore these additional aspects of sleep, as well 
as their association with activity timing. Such research might 
examine if bouts of activity closer to bedtime have a greater im-
pact on sleep than activity earlier in the day.

In this study both sedentary behavior and MVPA showed 
carryover from day-to-day within children. When children 

engaged in relatively high amounts of sedentary behavior or 
MVPA, they would engage in relatively higher amounts of MVPA 
on the following day as well. High values of carryover in MVPA 
and sedentary behavior might be indicators of habit formation, 
with low levels perhaps being indicative of a behavior mainten-
ance framework [55]. Behavioral carryover might serve as an 
indicator of successful habit formation, and ultimately inform 
behavior maintenance interventions.

Sleep was characterized by antipersistance, a different form 
of carryover. The negative autoregressive carryover value indi-
cated that children fluctuate around their average amount of 
nighttime sleep in a sawtooth pattern. For instance, a night of 
short sleep would be followed by a night of relatively longer 
sleep, and then a night of relatively short sleep and so on. This 

Figure 4.  (A–B) Means of time-use activity behaviors and zBMI for clusters. Asterisk indicates statistically significant group difference between all clusters at p < 0.05.
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is consistent with past research examining children’s sleep pat-
terns [18], and is especially important given that inconsistent 
sleep patterns have been linked to increased risk for overweight 
and obesity [56, 57]. This finding reinforces the need for inter-
vention strategies to stabilize children’s sleep patterns in order 
to address overweight and obesity.

Between person associations

In addition to exploring the average (or nomothetic) asso-
ciations between behaviors, this study aimed to capture 
the individual heterogeneity around these averages using a 
within-person approach, and then describe this heterogen-
eity using person-centered analyses. Consistent with past 
research using traditional modeling approaches, this study 
confirmed that children sleep less and engage in less seden-
tary behavior on school days [28, 52]. This work extends these 
findings by showing that children with higher zBMI experi-
enced larger increases in sedentary behavior on nonschool 
days compared with children with lower zBMI. This finding 
is particularly relevant in the context of increasing evidence 
which points to children being at risk for accelerated weight 
gain during the summer break from school [28, 52]. Indeed, 
children who are overweight or obese have larger increases 
in zBMI during the summer when compared to their normal 
weight peers [58]. The current study results suggest that the 
disproportionate increases in summer zBMI observed among 
overweight or obese children, may be attributed to a differen-
tial impact of school structure on sedentary behavior. Thus, 
interventions that target reducing sedentary time during the 
summer may be particularly impactful for children who are 
already overweight or obese. Along similar lines, children who 
were less active on average, had relative increases in MVPA 
on school days, which may indicate that the regulated and 
consistent (i.e. structured) environment afforded by school 
can provide intentional (e.g. PE and recess), and unintentional 
(e.g. commute to school and classroom transitions) physical 
activity opportunities that benefit children who are not get-
ting adequate physical activity [52], and are at the highest risk 
for overweight or obesity.

The finding that youth with high levels of sleep carryover ex-
perience greater decreases in sleep on school nights may indi-
cate that such children require greater external support (such as 
parental rules or consistent family routines) for sleep hygiene 
behaviors in order to maintain stable sleep patterns. There is 
increasing recognition that sleep variability (above and beyond 
sleep duration) is uniquely associated with health outcomes 
including zBMI [59]. The ability to maintain consistent sleep 
might be conceptualized as sleep regulatory ability, or sleep re-
silience, and could be an indicator of broader self-regulatory 
ability, as has been observed in studies of mood stability [60]. 
Future research might continue to examine the concept of sleep 
resilience as a protective factor against negative health out-
comes or indicator of treatment effectiveness.

Clusters

Cluster analysis based on standardized DSEM estimates re-
vealed four heterogeneous groups (High Activity, Sleep Resilient, 
High Sedentary, and Dysregulated Sleep), which further dem-
onstrate how typical (i.e. nomothetic) methods based on group 

means might obscure results. For example, overall results in-
dicated that the “average” child in the sample showed some 
amount of sleep carryover. In contrast, individuals in the Sleep 
Resilient cluster 2, showed a greater degree of stability (sleep 
resilience) evidenced by a nonsignificant average autoregressive 
sleep parameter and more beneficial movement patterns on 
school days (i.e. less sedentary, more MVPA, and unchanged 
sleep). Individuals in the Sleep Resilient cluster 2 also had the 
lowest average zBMI across time.

In contrast, youth in the Dysregulated Sleep cluster showed 
the most dysregulated sleep (i.e. highest sleep carryover), and 
correspondingly greatest decrease in sleep on school nights, 
and no significant changes in MVPA or sedentary behavior on 
school days. Indeed, the Dysregulated Sleep cluster had over 10 
times more carryover in sleep compared to the Sleep Resilient 
cluster. Thus, the Dysregulated Sleep cluster may represent chil-
dren who have misaligned chronotypes or social jet lag. Social 
jet lag is the discrepancy between an individual’s own biological 
rhythm and the daily timing determined by social constraints 
[61] such as school. Such children may benefit from later school 
start times [62] or interventions to improve sleep regularity. 
These children may require additional intervention to prevent 
weight gain during summer months, given that it appears that 
school structure is not associated with behavioral improve-
ments compared to nonstructured days. It might be reasonable 
to speculate that children in the Sleep Resilient cluster would 
be most amenable to structure provided by school, whereas 
children in the Dysregulated Sleep cluster might require extra 
support given the variability in sleep and lack of benefit in 
movement patterns seen on school days.

While the overall (i.e. nomothetic) results indicated that 
sleep more strongly predicted subsequent sedentary behavior 
for the “average” child in the sample, children in the High 
Activity cluster 1 showed the opposite results. Children in the 
High Activity cluster 1 had significantly stronger effects for sed-
entary behavior predicting subsequent sleep compared with 
the reverse. Notably, these children also showed significantly 
higher MVPA compared to other clusters. Children with this be-
havior pattern might not benefit as much from interventions to 
improve sleep, as sleep appears to be a downstream effect of 
activity.

By using a combination of between person, within-person 
and person-centered approaches to examining interindividual 
day-to-day variability in time-use activity behaviors, researchers 
can examine the differences in movement patterns on school 
versus nonschool days across individuals. Such behavior pat-
terns have the potential to inform targeted and personalized 
intervention efforts to prevent weight gain during summer 
months as well as during the school year.

Given the limited broad-based effectiveness of interventions 
to prevent and treat childhood obesity [63], the ability to iden-
tify behavioral subgroups based on links between behaviors pre-
sents the opportunity to leverage intensive longitudinal data to 
create behavioral phenotypes of dynamic behaviors. By using 
an idiopathic approach to examine the bidirectional effects be-
tween time-use activity behaviors, we can identify individual-
ized behavioral targets that have maximum effectiveness and 
potential co-benefits.

An additional strength of the study is the representation 
of minority and low-income youth in the sample. Structural 
issues of race, SES, and racism underlie well documented health 
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disparities in the United States [64] including those related to 
sleep [65] and physical activity [66]. Ensuring that individuals 
of diverse ethnic and racial backgrounds are represented in be-
havioral health research leads to better science and creates the 
potential to reduce health disparities in public health and medi-
cine [67].

Limitations

This study is a step toward applying an idiographic approach 
to examine patterns of time-use activity behaviors across days 
both in and out of school. However, results should be inter-
preted in the context of the study limitations. Standardized 
comparison of cross-lagged effects shows that a parameter is 
statistically stronger, but not more important. Therefore, it is not 
clear from such a model that manipulation of nighttime sleep 
would necessarily lead to changes in sedentary behavior. It is 
worth noting that the VAR(1) model used in the current study 
assumes that the dynamics between variables remain stable 
over time [68]. This might be particularly relevant for sleep 
and activity given the potential effects of weekend/weekday 
cycles [62], as well as seasonality and developmental changes. 
The current study was not powered to detect cycles or trends, 
but future studies might make use of advanced time-varying-
vector-autoregressive models to explore such trends [69] and cu-
mulative effects of sleep on physical activity which could inform 
intervention timing.

An additional consideration with DSEM models is that the 
strength of lagged relationships depends on the interval be-
tween observations [70] meaning that future studies may reach 
different conclusions about the reciprocal nature and the “causal 
dominance” of sleep and sedentary behavior, depending on the 
interval of time selected. This phenomenon (known as the “lag 
problem”) implies that simply because we modeled MVPA, sed-
entary behavior and nighttime sleep at the level of a single day, 
does not mean that the variables necessarily exert an influence 
on each other only at this interval [71]. Indeed, use of different 
timescale strategies might reveal different patterns when exam-
ining the links between physical activity and sleep dynamics 
within a single day or across multiple days [15]. Aspects of sleep 
beyond duration such as sleep latency, sleep quality, and sleep 
fragmentation will be important to examine in future studies, 
along with the impact of activity behavior timing.

Conclusion
The current study revealed significant bidirectional links be-
tween sleep and time-use activity behaviors that varied in both 
magnitude and direction between individuals. Similarly, activity 
patterns were significantly different on school versus nonschool 
days, however the magnitude and direction of these effects dif-
fered across individuals. Methodologically, this study highlights 
the value of using an idiographic approach at a time when re-
searchers are increasingly calling for individualized tailored ap-
proaches to prevention and intervention. Continued research 
using a person-centered perspective could inform novel and ef-
fective obesity prevention and intervention efforts.

Supplementary material
Supplementary material is available at SLEEP online.
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